

Apple Computer, Inc.
Technical Publications
April, 1998

Mac OS Sound

Including Sound Manager 3.3

C H A P T E R 2

Sound Manager

136 Sound Storage Formats

Figure 2-4 illustrates the fields of a format 2 ’snd ’ resource. The reference count field is
for your application’s use and is not used by the Sound Manager. The number of sound
commands field and the sound command fields are the same as described in a format 1
resource. The last field of this resource contains the sampled sound. The first command
should be either a soundCmd command or bufferCmd command with the data offset bit
set in the command to specify the location of this sampled sound header.

Listing 2-41 shows a resource specification that illustrates the structure of a format 2
’snd ’ resource.

Listing 2-41 A format 2 ’snd ’ resource

data ’snd ’ (9003, "Pig Squeal", purgeable) {

/*the sound resource header*/

$"0002" /*format type*/

$"0000" /*reference count for application’s use*/

/*the sound command*/

$"0001" /*number of sound commands that follow (1)*/

$"8051" /*command 1--bufferCmd*/

$"0000" /*param1 = 0*/

$"0000000E" /*param2 = offset to sound header (14 bytes)*/

/*the sampled sound header*/

$"00000000" /*pointer to data (it follows immediately)*/

$"00000BB8" /*number of bytes in sample (3000 bytes)*/

$"56EE8BA3" /*sampling rate of this sound (22 kHz)*/

$"000007D0" /*starting of the sample’s loop point*/

$"00000898" /*ending of the sample’s loop point*/

$"00" /*standard sample encoding*/

$"3C" /*baseFrequency at which sample was taken*/

$"80 80 81 82 84 87 93 84" /*the sampled-sound data*/

$"6F 68 6D 65 72 7B 82 88"

$"91 8E 8D 8F 86 7E 7C 79"

$"6F 6D 71 70 70 79 7F 81"

$"89 8F 8D 8B" /*rest of data omitted in this example*/

};

Note
Remember that format 2 ’snd ’ resources are obsolete. You should
create only format 1 ’snd ’ resources. ◆

Sound Files 2
This section describes in detail the structure of AIFF and AIFF-C files. Both of these types
of sound files are collections of chunks that define characteristics of the sampled sound
or other relevant data about the sound.

C H A P T E R 2

Sound Manager

Sound Storage Formats 137

2
S

ound M
anager

Note
Most applications only need to read AIFF and AIFF-C files or to record
sampled-sound data directly to them. You can both play and record AIFF
and AIFF-C files without knowing the details of the AIFF and AIFF-C file
formats, as explained in the chapter “Introduction to Sound on the
Macintosh” in this book. Thus, the information in this section is for
advanced programmers only. ◆

Currently, the AIFF and AIFF-C specifications include the following chunk types.

The following sections document the four principal kinds of chunks that can occur in
AIFF and AIFF-C files.

Chunk Organization and Data Types 2

An AIFF or AIFF-C file contains several different types of chunks. For example, there is a
Common Chunk that specifies important parameters of the sampled sound, such as its
size and sample rate. There is also a Sound Data Chunk that contains the actual audio
samples. A chunk consists of some header information followed by some data. The

Chunk type Description

Form Chunk Contains information about the format of an AIFF or
AIFF-C file and contains all the other chunks of such a file.

Format Version Chunk Contains an indication of the version of the AIFF-C
specification according to which this file is structured
(AIFF-C only).

Common Chunk Contains information about the sampled sound such as the
sampling rate and sample size.

Sound Data Chunk Contains the sample frames that comprise the
sampled sound.

Marker Chunk Contains markers that point to positions in the sound data.

Comments Chunk Contains comments about markers in the file.

Sound Accelerator Chunk Contains information intended to allow applications to
accelerate the decompression of compressed audio data.

Instrument Chunk Defines basic parameters that an instrument (such as a
sampling keyboard) can use to play back the sound data.

MIDI Data Chunk Contains MIDI data.

Audio Recording Chunk Contains information pertaining to audio recording
devices.

Application Specific
Chunk

Contains application-specific information.

Name Chunk Contains the name of the sampled sound.

Author Chunk Contains one or more names of the authors (or creators) of
the sampled sound.

Copyright Chunk Contains a copyright notice for the sampled sound.

Annotation Chunk Contains a comment.

C H A P T E R 2

Sound Manager

138 Sound Storage Formats

header information consists of a chunk ID number and a number that indicates the size
of the chunk data. In general, therefore, a chunk has the structure shown in Figure 2-6.

Figure 2-6 The general structure of a chunk

The header information of a chunk has this structure:

TYPE ChunkHeader =

RECORD

ckID: ID; {chunk type ID}

ckSize: LongInt; {number of bytes of data}

END;

The ckID field specifies the chunk type. An ID is a 32-bit concatenation of any four
printable ASCII characters in the range ’ ’ (space character, ASCII value $20) through
’~’ (ASCII value $7E). Spaces cannot precede printing characters, but trailing spaces are
allowed. Control characters are not allowed. You can specify values for the four types of
chunks described later by using these constants:

CONST

FormID = ’FORM’; {ID for Form Chunk}

FormatVersionID = ’FVER’; {ID for Format Version Chunk}

CommonID = ’COMM’; {ID for Common Chunk}

SoundDataID = ’SSND’; {ID for Sound Data Chunk}

The ckSize field specifies the size of the data portion of a chunk and does not include
the length of the chunk header information.

The Form Chunk 2

The chunks that define the characteristics of a sampled sound and that contain the actual
sound data are grouped together into a container chunk, known as the Form Chunk. The
Form Chunk defines the type and size of the file and holds all remaining chunks in the
file. The chunk ID for this container chunk is ’FORM’.

data bytes

header info
ckID

ckSize

data

C H A P T E R 2

Sound Manager

Sound Storage Formats 139

2
S

ound M
anager

A chunk of type ’FORM’ has this structure:

TYPE ContainerChunk =

RECORD

ckID: ID; {’FORM’}

ckSize: LongInt; {number of bytes of data}

formType: ID; {type of file}

END;

For a Form Chunk, the ckSize field contains the size of the data portion of this chunk.
Note that the data portion of a Form Chunk is divided into two parts, formType and the
rest of the chunks of the file, which follow the formType field. These chunks are called
local chunks because their chunk IDs are local to the Form Chunk.

The local chunks can occur in any order in a sound file. As a result, your application
should be designed to get a local chunk, identify it, and then process it without making
any assumptions about what kind of chunk it is based on its order in the Form Chunk.

The formType field of the Form Chunk specifies the format of the file. For AIFF files,
formType is ’AIFF’. For AIFF-C files, formType is ’AIFC’. Note that this type might
not be the same as the operating-system type with which the File Manager identifies the
file. In particular, a file of operating-system type ’AIFC’ might be formatted as an AIFF
file.

The Format Version Chunk 2

One difference between the AIFF and AIFF-C file formats is that files of type AIFF-C
contain a Format Version Chunk and files of type AIFF do not. The Format Version
Chunk contains a timestamp field that indicates when the format version of this AIFF-C
file was defined. This in turn indicates what format rules this file conforms to and allows
you to ensure that your application can handle a particular AIFF-C file. Every AIFF-C file
must contain one and only one Format Version Chunk.

In AIFF-C files, a Format Version Chunk has this structure:

TYPE FormatVersionChunk =

RECORD

ckID: ID; {’FVER’}

ckSize: LongInt; {4}

timestamp: LongInt; {date of format version}

END;

Note
In AIFF files, there is no Format Version Chunk. ◆

The timestamp field indicates when the format version for this kind of file was created.
The value indicates the number of seconds since January 1, 1904, following the normal
time conventions used by the Macintosh Operating System. (See the chapter on date and

C H A P T E R 2

Sound Manager

140 Sound Storage Formats

time utilities in Inside Macintosh: Operating System Utilities for several routines that allow
you to manipulate time stamps.)

You should not confuse the format version time stamp with the creation date of the file.
The format version time stamp indicates the time of creation of the version of the format
according to which this file is structured. Because Apple defines the formats of AIFF-C
files, only Apple can change this value. The current version is defined by a constant:

CONST

AIFCVersion1 = $A2805140; {May 23, 1990, 2:40 p.m.}

The Common Chunk 2

Every AIFF and AIFF-C file must contain a Common Chunk that defines some
fundamental characteristics of the sampled sound contained in the file. Note that the
format of the Common Chunk is different for AIFF and AIFF-C files. As a result, you
need to determine the type of file format (by inspecting the formType field of the
Form Chunk) before reading the Common Chunk.

For AIFF files, the Common Chunk has this structure:

TYPE CommonChunk =

RECORD

ckID: ID; {’COMM’}

ckSize: LongInt; {size of chunk data}

numChannels: Integer; {number of channels}

numSampleFrames: LongInt; {number of sample frames}

sampleSize: Integer; {number of bits per sample}

sampleRate: Extended; {number of frames per second}

END;

For AIFF-C files, the Common Chunk has this structure:

TYPE ExtCommonChunk =

RECORD

ckID: ID; {’COMM’}

ckSize: LongInt; {size of chunk data}

numChannels: Integer; {number of channels}

numSampleFrames: LongInt; {number of sample frames}

sampleSize: Integer; {number of bits per sample}

sampleRate: Extended; {number of frames per second}

compressionType: ID; {compression type ID}

compressionName: PACKED ARRAY[0..0] OF Byte;

{compression type name}

END;

The fields that exist in both types of Common Chunk have the following meanings:

C H A P T E R 2

Sound Manager

Sound Storage Formats 141

2
S

ound M
anager

The numChannels field of both types of Common Chunk indicate the number of audio
channels contained in the sampled sound. A value of 1 indicates monophonic sound, a
value of 2 indicates stereo sound, a value of 4 indicates four-channel sound, and so forth.
Any number of audio channels may be specified. The actual sound data is stored
elsewhere, in the Sound Data Chunk.

The numSampleFrames field indicates the number of sample frames in the Sound Data
Chunk. Note that this field contains the number of sample frames, not the number of
bytes of data and not the number of sample points. For noncompressed sound data, the
total number of sample points in the file is numChannels * numSampleFrames. (For
more information on sample points, see “Sampled-Sound Data” on page 64.)

The sampleSize field indicates the number of bits in each sample point of
noncompressed sound. Although the field can contain any integer from 1 to 32, the
Sound Manager currently supports only 8- and 16-bit sound. For compressed sound data,
this field indicates the number of bits per sample in the original sound data, before
compression.

The sampleRate field contains the sample rate at which the sound is to be played back,
in sample frames per second. For a list of common sample rates, see Table 2-1 on page 71.

An AIFF-C Common Chunk includes two fields that describe the type of compression
(if any) used on the audio data. The compressionType field contains the type of the
compression algorithm, if any, used on the sound data. Here are the currently available
compression types and their associated compression names:

CONST

{compression types}

NoneType = ’NONE’;

ACE2Type = ’ACE2’;

ACE8Type = ’ACE8’;

MACE3Type = ’MAC3’;

MACE6Type = ’MAC6’;

You can define your own compression types, but you should register them with Apple.

Finally, the compressionName field contains a human-readable name for the
compression algorithm ID specified in the compressionType field. Compression names
for Apple-supplied codecs are defined by constants:

CONST

{compression names}

NoneName = ’not compressed’;

ACE2to1Name = ’ACE 2-to-1’;

ACE8to3Name = ’ACE 8-to-3’;

MACE3to1Name = ’MACE 3-to-1’;

MACE6to1Name = ’MACE 6-to-1’;

This string is useful when putting up alert boxes (perhaps because a necessary
decompression routine is missing). Pad the end of this array with a byte having the value

C H A P T E R 2

Sound Manager

142 Sound Storage Formats

0 if the length of this array is not an even number (but do not include the pad byte in the
count).

The Sound Data Chunk 2

The Sound Data Chunk contains the actual sample frames that make up the sampled
sound. The Sound Data Chunk has this structure:

TYPE SoundDataChunk =

RECORD

ckID: ID; {’SSND’}

ckSize: LongInt; {size of chunk data}

offset: LongInt; {offset to sound data}

blockSize: LongInt; {size of alignment blocks}

END;

The offset field indicates an offset (in bytes) to the beginning of the first sample frame
in the chunk data. Most applications do not need to use the offset field and should set
it to 0.

The blockSize field contains the size (in bytes) of the blocks to which the sound data
is aligned. This field is used in conjunction with the offset field for aligning sound data
to blocks. As with the offset field, most applications do not need to use the blockSize
field and should set it to 0.

The sampled-sound data follows the blockSize field. For information on the format of
sampled-sound data, see “Sampled-Sound Data” on page 64.

Note
The Sound Data Chunk is required unless the numSampleFrames field
in the Common Chunk is 0. A maximum of one Sound Data Chunk can
appear in an AIFF or AIFF-C file. ◆

Format of Entire Sound Files 2

Figure 2-7 illustrates an AIFF-C file that contains approximately 4.476 seconds of 8-bit
monophonic sound data sampled at 22 kHz. The sound data is not compressed. Note that
the number of sample frames in this example is odd, forcing a pad byte to be inserted
after the sound data. This pad byte is not reflected in the ckSize field of the Sound Data
Chunk, which means that special processing is required to correctly determine the actual
chunk size.

On a Macintosh computer, the Form Chunk (and hence all the other chunks in an AIFF or
AIFF-C file) is stored in the data fork of the file. The file type of an AIFF format file is
’AIFF’, and the file type of an AIFF-C format file is ’AIFC’. Macintosh applications
should not store any information in the resource fork of an AIFF or AIFF-C file because
that information might not be preserved by other applications that edit sound files.

C H A P T E R 2

Sound Manager

Sound Storage Formats 143

2
S

ound M
anager

Figure 2-7 A sample AIFF-C file

Every Form Chunk must contain a Common Chunk, and every AIFF-C file must contain
a Format Version Chunk. In addition, if the sampled sound has a length greater than 0,
there must be a Sound Data Chunk in the Form Chunk. All other chunk types are
optional. Your application should be able to read all the required chunks if it uses AIFF or
AIFF-C files, but it can choose to ignore any of the optional chunks.

When reading AIFF or AIFF-C files, you should keep the following points in mind:

■ Remember that the local chunks in an AIFF or AIFF-C file can occur in any order. An
application that reads these types of files should be designed to get a chunk, identify it,
and then process it without making any assumptions about what kind of chunk it is
based on its order.

■ If your application allows modification of a chunk, then it must also update other
chunks that might be based on the modified chunk. However, if there are chunks
in the file that your application does not recognize, you must discard those
unrecognized chunks. Of course, if your application is simply copying the AIFF or
AIFF-C file without any modification, you should copy the unrecognized chunks, too.

27263184

38

1

99611

99619

0

0

0

Form
Chunk

99690

8

22254.54

Format
Version
Chunk

Common
Chunk

Sound
Data
Chunk

AIFF-C
file

FORM

AIFF-C

FVER

4

COMM

NONE

“not compressed”

SSND

ckID

ckSize

ckID

ckSize

timestamp

formType

ckID

ckSize

numChannels

numSampleFrames

sampleSize

sampleRate

compressionType

compressionName

ckID

ckSize

offset

blockSize

sound dataSound
data

Frame 1 to frame n (to 99,611)

Bytes

4

4

4

4

4

4

4

4

2

4

2

8

4

16

4

4

4

4

Variable

1

Example

pad byte

C H A P T E R 2

Sound Manager

144 Sound Manager Reference

■ You can get the clearest indication of the number of sample frames contained in an
AIFF or AIFF-C file from the numSampleFrames parameter in the Common Chunk,
not from the ckSize parameter in the Sound Data Chunk. The ckSize parameter is
padded to include the fields that follow it, but it does not include the byte with a value
of 0 at the end if the total number of sound data bytes is odd.

■ Remember that each chunk must contain an even number of bytes. Chunks whose
total contents would yield an odd number of bytes must have a pad byte with a value
of 0 added at the end of the chunk. This pad byte is not included in the ckSize field.

■ Remember that the ckSize field of any chunk does not include the first 8 bytes of the
chunk (which specify the chunk type).

Sound Manager Reference 2

This section describes the constants, data structures, and routines provided by the Sound
Manager. It also describes the format of data stored in sound resources and files that the
Sound Manager can play.

The section “Constants” describes the constants defined by the Sound Manager that you
can use to specify channel initialization parameters and sound commands. It also lists the
sound attributes selector for the Gestalt function and the returned bit numbers.

The section “Data Structures” beginning on page 154 describes the Pascal data structures
for all of the Sound Manager records that applications can use, including sound
commands, sound channels, and sound headers.

The section “Sound Manager Routines” beginning on page 174 describes the routines that
allow you to play sounds, manage sound channels, and obtain sound-related
information. That section also includes information on routines that give you low-level
control over sound output.

The section “Application-Defined Routines” beginning on page 206 describes callback
procedures and completion routines that your application might need to define.

The section “Resources” beginning on page 209 describes the organization of format 1
and format 2 ’snd ’ resources.

Constants 2
This section describes the constants that you can use to specify channel initialization
parameters, sound commands, and chunk IDs. It also lists the Gestalt function sound
attributes selector and the returned bit numbers. All other constants defined by the
Sound Manager are described at the appropriate location in this chapter. (For example,
the constants that you can use to specify sound data types are described in connection
with the SndNewChannel function beginning on page 182.)

