Rounding and Scaling
in Fixed-Point
FFT Implementations

P. Kabal and B. Sayar

INRS-Télécommunications
8 Place du Commerce
lle des Soeurs, Qué.
CANADA H3E 1H¢6

June 12, 1985

Rapport technique de PINRS-Télécommunications no. 85-24'

Rounding and Scaling in Fixed-Point

FFT Implementations

Abstract

The calculation of the discrete Fourier transform using a fast Fourier transform (FFT) algo-
rithm with fixed-point arithmetic is considered. The input data is scaled to prevent overflow and to
maintain accuracy. New conditions on the magnitudes of the input components to avoid overflow
during the computation of the FFT are derived. Particular emphasis is placed on an implementa-
tion using a digital signal processing architecture based on a 16-bit fixed-point representation for
the data and the provision for double precision accumulation of sums and products. Simulation
results to assess the error performance (signal-to-noise ratio) are presented for various forms of the
implementation. Algorithm variants as well as different rounding options are compared. Execution
times for implementations based on a single chip signal processor (the Texas Instruments TMS320)
are also given. These show that a considerable increase in accuracy can be obtained with only a

small penalty in execution time, by applying an alternating form of rounding rather than truncation.

Contents

ADBSTracto e)
CONEENESot e e e e 7
Lo Introductionot e T e 1
2. DFT Calculation with Fixed-Point Arithmetic 3
2.1 Fixed-Point Arithmetic 3

2.2 Characteristics of a DSP Chip i 3

2.3 Scaling for the Discrete Fourier Transform 4

2.4 FFT Algorithms e 7

2.5 Rounding 10

3. Simulation Results. 14
3.1 Experimental Setup. e 14

3.2 Assessing Bias e e 15

3.3 Truncation Results e 16

3.4 Computational Error Model 18

3.5 Rounding Results e 20

3.6 Cosine Table. e e 22

3.7 Input Precision. e e 23

4. Speed of Execution on the TMS32010 it 24
4.1 FFT Algorithms e e e 24

4.2 Direct Computationot e 25

5. Summary and Conclusions. 27
Appendix A. Maximum Magnitude of the DFT Components 28
A1 Maximum Output Values e 28

A.2 Bounds on the Normalized Sum....... i, 29

A.3 Application to the DF T e 29
Appendix B. Gain and Mean Compensated Error 31
B.1 Mean Compensated Squared Difference ciuen... 31

B.2 Gain Compensated Squared Difference cuen.... 32

B.3 Gain and Mean Compensated Squared Difference 32
Appendix C. TMS320 Routines.ttt et e e 34
C.1 Bit Reversal e 34

C.2 Double Precision DIT FF T e 35

C.3 Single Precision DIT FF T i 37

Cid DIF FET o e e e e 40

C.5 Direct DET ..o 42
References . ..o e 45

- -

1. Introduction

The need for the computation of the discrete Fourier transform (DFT) arises in a variety of
applications in speech, radar and sonar signal processing [1]. A DFT can be implemented either
with special-purpose hardware, or as a program on a digital signal processing (DSP) chip. These
DSP chips are characterized by a highly pipelined internal structure and a fast multiply /accumulate
unit. This architecture is well suited for the computation of the DFT, either in direct form or using
a fast Fourier transform (FFT) algorithm. A programmable approach is flexible and permits other
functions to be performed with the same hardware. For instance, preprocessing steps to window
the input data or postprocessing steps to further manipulate the Fourier coefficients can easily be
accommodated the same programmable device.

Any computation of the DFT will have an accuracy limited by finite precision arithmetic. The
objective of this report is to study the implementation of DFT’s based on a fized-point processor.
A common feature both in DSP chips and standalone multipliers is a double precision accumulator.
Specifically, the focus will be on 16-bit representation of data with judicious use of 32-bit accumula-
tion of products and sums. This paper considers more general rounding schemes and variants of the
FFT algorithms that do not conveniently fit into the analysis framework used in |2]. The accuracy
and execution time of these computation procedures are the subject of this study. For execution time
comparisons, attention is focussed on a widely available DSP chip, the Texas Instruments TMS320.

Three computation procedures are considered: 1) direct computation of the DFT, 2} decimation-
in-time FFT algorithms, and 3) decimation-in-frequency FFT algorithms. Thve FFT algorithms are
conventional algorithms which are important in practice since they can be implemented with compact
hardware or memory efficient software. Furthermore, the ability of these algorithms to carry out the
calculations in-place is an important asset for devices or configurations with limited data memory.
Many of the scaling and rounding considerations which apply to conventional FFT’s carry over to
other fast DFT algorithms as well.

Evaluation of the different options for calculating the DFT will be in two steps. A simulation
of the algorithm with fixed-point arithmetic on a general purpose computer is used to assess the
error performance. This strategy allows flexible error performance monitoring in a data processing
environment. The fixed-point arithmetic used in the simulation mimics that of a specific signal
processor as far as word size and accuracy are concerned. As a consequence, the numerical results
of the simulations are identical to that produced by an implementation on the signal processor. In
addition, the execution time for the algorithms when implemented on the signal processor will be
given. This allows one to select a technique with a good combination of error performance and speed
of execution.

Section 2 introduces the basics of the fixed-point arithmetic system used for calculating the

DFT. It also introduces sufficient conditions on the magnitudes of the input data to guarantee that

-1 -

the output data and intermediate values are representable in fixed-point format. Relevant aspects of
fast Fourier transform algorithms used to calculate the DFT are also discussed. The section closes
with an examination of different rounding options that may be used in the FFT calculations.

Section 3 gives the results for simulations of the different forms of the fixed-point implementa-
tions. The main focus is on the error performance of the algorithms.

The implementation of the algorithms on a TMS32010 processor is considered in Section 4.
Both the compatibility of the architecture with the different implementation options and the speed
of execution are discussed.

The last section reviews the results of this study and gives a summary of the conclusions.

2. DFT Calculation with Fixed-Point Arithmetic

In this section, different methods of implementing the discrete Fourier transform with fixed-

point arithmetic will be considered.

2.1 Fixed-Point Arithmetic

The arithmetic units in digital signal processing hardware usually employ fixed-point compu-
tations. It is convenient to consider data values which are fractions (magnitude less than unity).
These fractional values are represented as fixed-point numbers. Negative numbers are represented
in two’s-complement notation. The advantage of fractional notation in signal processing is that
products of fixed-point fractions remain fixed-point fractions. The possibility of overflow exists for
sums of fixed-point fractions, generally necessitating additional scaling of the values. However, if
the sum of a number of terms results in a value which can be represented in fractional notation,
intermediate overflows can be ignored. This property will be exploited later.

A key feature of the arithmetic processor used is the availability of a double precision accumu-
lator. Products of single precision values give double precision values which can be added to the
accumulator. Stored single or double precision values can also be directly added to the accumulator.
The contents of the accumulator can be stored either as single or double precision value.

The availability of double precision accumulation is of benefit in complex multiplication. Con-

sider two complex numbers a; and a2 which can be represented as

a; = uy +Jvq and a2 = ug + Jug - (1)
The product of a; and a3 is given by

araz = (uyuz — viv2) + J(uguz + v1vs) . ' (2)

Note that each real multiplication yields a double precision result. With double precision accumu-
lation, the products can be summed with no loss of precision. Furthermore, the real and imaginary
parts of the result can be kept in double precision in anticipation of subsequent operations. On the
other hand with single precision accumulation, precision is‘ sacrificed at the intermediate steps even
before forming the resultant values.

The simulations will focus on 16-bit representations, with a 32-bit accumulator. This represen-

tation is compatible with available signal processing elements.

2.2 Characteristics of a DSP Chip

An example of a single chip implementation of a signal processor with features as described

above is the Texas Instruments TMS320 DSP chip. Since this chip has 16-bit wide input/output

8.

paths, values are generally represented as 16-bit numbers. At the expense of multiple write or read
cycles, 32-bit values can also be stored or retrieved from memory.

The DSP multiplier takes two 16-bit quantities (each represented by a sign bit with 15 data
bits) to produce a 32-bit result, consisting of a sign extended 31-bit product (sign bit with 30 data
bits). This product can be added to or loaded into the accumulator. Because of the extra bit of
head room in the accumulator, two products can be summed without overflow. The arithmetic unit
also provides for shifting 16-bit data values before adding to the accumulator and for the extraction
of specific 16-bit fields from the accumulator. These shifting operations allow convenient scaling by

(selected) powers of two.

2.3 Scaling for the Discrete Fourier Transform

Consider a complex sequence {z,} of length N. The discrete Fourier transform of {z,} is the
complex sequence { X} of length N, defined as l

N-~—-1
X, = Z zpe I2mnk/N k=0,..,N—-1. (3)

n=0

The direct computation of the DFT simply consists of repeatedly performing the basic multi-
ply/accumulate operations for each of the real and imaginary parts of the result. A double precision
accumulator can be used to advantage, however care must be exercised to prevent overflow. FFT
algorithms restructure the computation into a number of stages. For radix-2 algorithms, there are
log, N stages in the computation. At each stage, N complex values are used to compute N new
complex values.

The magnitude of any complex output value is less than or equal to the sum of the magnitudes of
the complex input values. This means that the output magnitude is at most N times the maximum
input magnitude. The magnitude of the output values is less than unity if the input data is scaled

such that

1
|In|<N’ 0<n<N-1. (4)

This strategy results in a poor signal-to-noise ratio {SNR) since log, N bits of precision have been
discarded at the beginning of the computation. To help maintain accuracy, a better approach is to
postpone scaling as long as possible in the computation or to distribute the scaling in the processing
steps.

For the remaining discussion, it will be assumed that the calculation of the DFT, whether
in direct form or using an FFT algorithm, will include a scaling by 1/N. With this assumption,
|zn] < 1, =0,..., N — 1, will guarantee a representable output value. Dynamic verification of this

bound is not simple since calculation of the magnitude (squared) requires the calculation of the sum

4

of products. A test on the magnitudes of the real and imaginary components of the input sequence is
easler to implement. Additionally, the complex DFT is often used as the kernel of other procedures.
For instance, the calculation of the DFT of a real sequence 3] or the calculation of the discrete cosine
transform (DCT) [4] can be broken into three steps. A preprocessing step involves rearrangement
of the data storage order without any arithmetic operations on the values. This is followed by the
computation of the complex DFT of the reordered data. The last step is a postprocessing of the
DFT output data, which does involve arithmetic operations. For these types of algorithms, a test
on the magnitudes of the input sequence is equivalent to a test on the magnitudes of the real and
imaginary components of the input to the DFT part of the calculation.

Let the real and imaginary components of the input sequence satisfy
’Re[an <a and ‘Im[an <a. (5)

These bounds result in | X;| < v/2Na, k= 0,1,..., N—1. With scaling by 1/N, and the requirement
that the output magnitude be less than one, a = 1/\/5 However, this is not the tightest bound
on the real and imaginary components of the input data. In Appendix A it is shown that the
magnitudes of the real and imaginary parts of the output of the complex DFT will be less than
Na4/n, where a is the maximum magnitude of the components of the input. With scaling by 1/N
and the requirement that the output components have magnitude less than one, a = 1r/4 Then the
output components are representable in fractional notation if the real and imaginary parts of the
input data satisfy

[Re[z,]| < Z and |Im|z,.]| < % . ()

Note that for nearly equal real and imaginary components, these bounds can result in values of z,,
and Xy which are larger than unity in magnitude (see Fig. 1).

The bounds given above are sufficient to guarantee representable output values. As such, these
results apply to the direct computation of a DFT. In an FFT computation, data is processed in
stages. Even though the output may be known to be scaled properly, it is difficult in general to
anticipate all combinations of possible overflow situations at the intermediate stages. However, as
will be shown later, the above bounds also apply to the intermediate values, as well as the output
values, in a decimation-in-time FFT algorithm.

Scaling of the data may be applied in several ways depending on the task at hand. Indeed, it may
be possible to guarantee that the data to be transformed has a range which avoids overflow problems.
Perhaps in a previous step, values have been scaled so as to limit the maximum magnitude of the
components to be transformed. Consider a typical application in a signal processing environment.
Data is collected from an analog-to-digital (A/D) converter and a tapered time window is applied
to the data. In such a situation, the window coefficients can be scaled so as to ensure that the

maximum data value is in the proper range.

mfxn}
T T T~ ~
-~ /4 ~
1A/2 N
AN
/ \
/ //\
/ edlin
\
—Lll' il VA7 W2 w4 |1 Relal]
Il I
\ /
\ /
\ /
\ /
S1R/7
/4
~ P
~ ~ - P’ — -
(a) Input data bounds
Im|Xi |
1
/2%
/ v \
/ 4 \
! \
[
[= 1| [RelXy]
] |
! 1
\ !
\ /
\ /
1
~ -

(b) Output data bounds for |Re[z,]| < 7/4 and |Im[z,]| < x/4

Fig. 1 Bounds on the input and output values

The situation cited above is an example of a fixed scaling of the data. In other cases, it is not
a potential overflow that is the main concern, but instead it is desired to scale the data so that it
occupies the available dynamic range. An example is in the use of a DFT in a frequency domain
speech coder or in the front end processor of a speech recognition unit. One approach is to scan
the input data for the element which has the largest magnitude. The entire data array is then
scaled with the same scale factor to bring the largest value to near full scale. A particularly simple
form of scaling is to shift the data to accomplish multiplication by powers of two until the largest
magnitude element is less than either /4 or 1/4/2 as appropriate. This can be considered to give
a block floating point representation, with the number of bits shifted giving the exponent of the

representation. In fact, this scaling can in some cases be absorbed into the the first stage of the

-6 -

computation of the FFT.

The direct computation of the DFT involves the accumulation of products. To prevent accu-
mulator overflow, a reasonable strategy is to scale the output of the multiplier by a power of two
before accumulation. This scaling can be accomplished by shifting the product by [log, N] — 1 bits
prior to accumulation.! Even with this shift, for moderate values of N, the product is represented
with considerable increased accuracy compared to a single precision representation. At the end of

the computation of an output value, a single precision result can be extracted from the accumulator.

2.4 FFT Algorithms

Fast Fourier transform algorithms are efficient procedures for the computation of the DFT.
Two versions, decimation-in-time and decimation-in-frequency are considered [5]. Attention will
be restricted to basic radix-2 algorithms. As a result, the transform length N is assumed to be a
power of two. Both forms of the algorithm can be characterized in terms of a basic computational
unit commonly known as the butterfly. These butterflies take a pair of complex data values and
process them to produce a new pair of complex data values which can occupy the same storage
locations as the input data. The butterfly operations involve complex addition and multiplication
by a complex exponential. At each of the log, N stages of the FFT, N/2 butterflies are computed.
It is not possible (even without the constraint of in-place ‘computa.tion) to keep the output of the
butterflies in more than single precision without a dramatic increase in storage requirements. The

use of double precision accumulation within a butterfly is considered separately for the two forms of

the FFT algorithm.
2.4.1 Decimation-in-Time

The basic relationship which forms the heart of the decimation-in-time algorithm is the doubling

formula, -
N/2—-1 N/f2-1
X = Z zanIG/"zk + Wﬁk Z :czn_,_lW]G/”zk)
n=0 n=0
= Ay +WR*By ,

where Wy = expj2n/N. This expression gives the DFT of length N in terms of two N/2 point
DFT’s, denoted by the sequences {Ax} and {By}. Note that although each of the two N/2 point
DFT’s is periodic in k with period N/2, the twiddle factor W;,k makes the output sequence periodic
with period N. Two output values will be formed from two intermediate values. For k =0,..., N/2—

1, the computations are
Xy = A + Wy* By

(8)

Xnj2+k = Ak — Wy By .

t This takes into account the 1 bit of head room in the double precision product register.

7.

A form of this basic butterfly computation is shown in Fig. 2. Recursive application of this formula
gives the basic decimation-in-time (DIT) FFT algorithm. A flow graph of the complete computa-

tional procedure is shown in Fig. 3 for N = 8.

Fig. 2 Decimation-in-time butterfly

x(0) o o o X(0)
x(4)

X{1)

x{2) X(2)

x{6) X{3)

x{1) b X(4)

x(5) X{b)
x{3} X(6}
x(7} d X7
0 -1 - -3
| "2 | Fy |
< Stage » - Stage ,I

1 | N
| | | 092 |

Fig. 3 Flow graph for the DIT FFT

As indicated above, scaling is needed to prevent overflows in the computation of the DFT.
This scaling can be implemented at the butterflies of the FFT computation. The magnitude of the

complex values grows by at most a factor of two across a butterfly,
max(|Gk|, |Gi]) < max(|Gyl, |Gl]) < 2max(|Gil, |Gi]) - (9)

_ 8-

Shifting values by one bit to accomplish a scaling by 1/2 is appropriate. The highest accuracy
is preserved if this scaling is done only if an overflow is inevitable during the computation of the
butterfly. However, for this strategy to be efficient, hardware traps have to be available to sense
overflow conditions. These mechanisms are not available on current DSP chips. A compromise is to
scale by a factor of 1/2 at each of the log, N stages to result in the overall fixed scaling by 1/N.

An important property of the DIT form of the FFT is that the intermediate results at the
outputs of the butterflies are DFT’s of subsequences of the input data. As aresult, if the magnitudes
of the real and imaginary parts of the input sequence are bounded by x/4, all of the intermediate
results at the outputs of the butterflies, and of course the final output, will have real and imaginary
parts which are less than one in magnitude.f

With a double precision accumulator, there are several options for the implementation of the
DIT butterfly. In the lower branch, the result of the complex multiplication can be kept in dou-
ble precision in anticipation of the subsequent addition. However, this requires some overhead in
moving double precision values back and forth between the accumulator and temporary storage.
The butterfly is completed with the addition of single precision values to the products. Because of
the extra bit of head room in the product register, no overflow can occur with this strategy if the
input data is scaled so as to guarantee representable output values. Scaling by the factor of 1/2 is
accomplished by shifting one bit position as results are stored from the accumulator. This last step
is the point at which rounding can be applied. The options in terms of rounding will be described
in more detail later.

An alternative strategy is to convert the result of the multiplication to a single precision quantity
before addition. This reduces the number of interchanges between the accumulator and temporary
storage. This version will be referred to as the single precision DIT algorithm as contrasted with the
double precision DIT algorithm described in the previous paragraph. Note that the multiplication
by W' in the butterfly can be thought of as a rotation of the input complex value. This means
that if the magnitude of the input complex value is greater than one, it is possible for the real and
imaginary parts of the product to exceed one. However scaling at this point can be avoided since
intermediate overflows can be ignored if the butterfly output is known to be representable. This is

the case if the real and imaginary parts of the original input sequence are less than /4 in magnitude.

2.4.2 Decimation-in-Frequency

The relationship which forms the heart of the decimation-in-frequency (DIF) algorithm is an-

! The bounds given in Appendix A can be used to more tightly bound the intermediate values at the butterfly
outputs, especially at the beginning stages of the FFT.

. 9-

other doubling formula,

Nj2-1
Xog = Z (zn + IN/2+n)W]_I72k
n=0
Nj2-1
Xogt1 = Z (zn — IN/2+n)W1\—1"W§/"2k .

n=0

(10)

This expression gives the DFT of length N in terms of two N/2 point DFT’s. The first is the DFT
of the sequence {Z, + Zn/24,}, While the second is the DFT of the sequence {(z, — zn/2+n)Wy"}-
The form of the butterfly for the decimation-in-frequency algorithm is shown in Fig. 4, while the
complete flow graph for a DIF FFT (N = 8) is shown in Fig. 5. Note that for the DIF algorithm,
multiplication by the complex exponential term is performed at the output, rather than input stage
of the butterfly (as in the DIT algorithm). The magnitude of the complex values grows by at most
a factor of two across a butterfly (as in the DIT butterfly, c.f. Eq. (9)). Shifting values by one bit is

used to scale by 1/2 at each stage and gives an overall scale factor of 1/N.

Gk o

Gpo—

Fig. 4 Décimation-in-frequency butterfly

The butterfly computation involves sums of single precision quantities followed by a multiplica-
tion by a complex exponential. The result of the sum must be converted to a single precision quantity
for use as input to the multiplier. The result'ing product in the lower branch of the butterfly (Fig. 4)
is converted to single precision for storage.

For the DIF algorithm, the intermediate results at the outputs of the butterflies are not DFT’s
of the original input data. The scaling requirement is that the magnitudes of the input real and
imaginary parts each be less than 1/\/5, to guarantee that all butterfly outputs are less than one
in magnitude. This is in contrast to the slightly larger limit of n/4 that can be used in the DIT

algorithm. In fact, if the larger values are used, it is possible for overflow to occur at the very first
stage of the FFT.

2.5 Rounding

As has been indicated, at one or more places in the computation of the butterflies, a double

precision value must be converted to a single precision value. Truncation is a simple operation which

- 10 -

x{0) X(0})

x{1) q o X(4)

x(2) X(2)
x(3} X{6)
x{4) X{1)
x(5) X(5)
x(6) X{3)
x{7} X{(7}
Stage l Stage
le a) . |
| ‘ | ; toaz l

Fig. 5 Flow graph for the DIF FFT"

discards the low-order part of the double precision value. This tends to shift the value, moving it

towards zero for positive values and away from zero for negative values. On the other hand, rounding

attempts to replace the double precision value with the nearest single precision value. However, an

ambiguity arises whenever the value lies exactly halfway between two single precision values. This

gives rise to a number of different methods of rounding, which differ only in the way they approximate

the mid-way values. The different schemes are schematically illustrated in Fig. 6.

1)

Up-Rounding. The mid-way points are shifted up to the next allowable value. Negative
occurrences of mid-way points are moved towards zero.

Down-Rounding. The mid-way points are shifted down to the next allowable value. Negative
occurrences of mid-way points are shifted away from zero.

Magnitude Up-Rounding. The mid-way points are moved away from zero for both positive
and negative occurrences.

Magnitude Down-Rounding. The mid-way points are moved toward zero for both positive
and negative occurrences.

Value-alternate Rounding. This is a deterministic scheme which moves some occurrences of
the mid-way points up and some down. The specific implementation considered here moves
the mid-way point above zero, towards zero. The next larger mid-way points move away from
zero.. An alternation of the direction of rounding applies to adjacent mid-way points. The
direction in which rounding is applied is data dependent.

- 11 -

6) Random Rounding. The direction of rounding is determined in a pseudo-random fashion.
The direction of rounding does not depend on the data values.

7) Stage-alternate Rounding. In this new scheme which applies directly to FFT computations,

the direction of rounding alternates at each stage of the FFT. The direction of rounding does
not depend on the data values.

Negative Values

Positive Values

.

e

2 ?Llﬂ ?m U777 truncation
: /

————— —

i

]

+ —F
I I
| |
| |
| |

A/
B

|
l
|
|
|
|
L/ 877DV ILIT
i
!
i
|

O——

LD LLLML;_LLD ILLLLI_tLLU W;LLL round-up

O~

|
i
|

Ll

b —

q
———e ——
JR N W

w_LTM IZZFIZL round-down
|
| \
& l
|

|
7777777 D (TZ 7778777 magnitude round-up
b {

-0

/77 ACTTIY 77 77D 77T magnitude round-down
X

i
i
+
1
1
]

7779777771

3

5
P

L IRZZZ value alternate

!

|

|
——

1

L

O

|
1
I
i

-4 —

single precision values

Fig. 6 Rounding methods

The most common method of rounding is up-rounding. It is simple to implement. A value

corresponding to half of the weight of the least significant bit of single precision values is added

to the double precision accumulator. Truncation of this sum gives up-rounding. Down-rounding is

also simple to implement. The value to be added before truncation is slightly less than the value

applied for up-rounding. Specifically the value to be added is equal to half of the weight of the least

significant bit of single precision values, less the weight of the least significant bit of double precision

values. Intuitively both of these methods will tend to bias the output values by shifting the mean.

-12.

Magnitude rounding is more complex to implement than either up- or down-rounding since it
requires a test of the sign of the contents of the accumulator to determine whether rounding up or
down is to be applied. Intuitively, magnitude rounding techniques tend to alter the overall gain, but
not alter the mean. For instance, magnitude down-rounding will tend to decrease the magnitude of
the output values.

The last three rounding schemes could be grouped together under the rubric of unbiased tech-
niques. Value-alternate and random rounding attempt to avoid both the change in gain and the
shift in mean, but succeed only if the data exercises an equal number of up- and down-rounding
steps. Stage-alternate rounding has the same goals, but attempts to cancel biases in one stage of
the FFT by biases in the other stages.

Differences in the rounding techniques will manifest themselves only if the probability of hitting
the mid-way points is significant. Consider first the product of two single precision quantities. The
number of bits to be discarded in converting the double precision product to single precision is large.
Thus the probability of the mid-way point is small and differences in the results for the various forms
of rounding should be small. On the other hand, adding two single precision values gives a value with
only one extra bit of precision. When storing the sum scaled by a factor 1/2 as a single precision
quantity, the mid-way point can be expected to occur about half of the time. For t,hié'situation,
the rounding methods are no better than truncation in terms of the magnitude of the error in each
operation. It is for this case that the unbiased rounding schemes are useful. These schemes impart
errors in different directions at the different stages and thereby try to eliminate the overall bias.

The efficacy of these approaches in cancelling the bias is discussed in the next section. The

next section will also deal with the computational accuracy of each of the DFT algorithms described

earlier.

- 138 -

3. Simulation Results

The DFT algorithms described in the previous section have been simulated using fixed-point
arithmetic. The implementation uses routines which simulate the multiplication of two single pre-
cision quantities, the addition of both single and double precision quantities to a double precision
value and the conversion of a double precision value to single precision by extraction of a 16-bit field.

The goal of this section is the assessment of the performance of various forms of the DFT. To
this end, a gain and mean compensated SNR is introduced. This measure is useful in interpreting

the error performance of the different rounding options.

Results for both one-way and two-way (forward DFT followed by inverse DFT) computations
are given. The two-way SNR is important for evaluating fixed-point transforms in some filtering and
transform coding applications. For instance, a transform coder for speech or video has a transform
stage followed by a quantizer and coder. The matching decoder utilizes an inverse transform. With
fixed-point arithmetic, the errors introduced in the computa.tiohs of the transform and the inverse

transform limit the performance of such a coding system.

3.1 Experimental Setup

In the simulations, the input data were uniformly distributed, pseudo-random fixed-point frac-
tional values between —1/\/5 and +1/+/2. This guarantees no overflow of the intermediate results of
the FFT computations {butterfly outputs), although care must still be exercised inside each butter-
fly. Note that the use of fixed-point data means that initial approximation errors are not included
in the resulting error. The statistical stability of the results was assured by averaging a number of
runs {typically 10}. Experimentally, the SNR figures vary only a small fraction of a dB for averages
taken with different pseudo-random input sequences.

The root-mean square (rms) value of the random test input is approximately 1/ V6 or —7.78
dB relative to full scale. Note that this type of input sequence tends to make SNR figures look
comparatively good. The input occupies nearly the full dynamic range and yet has a relatively large
rms value. For more typical input signals the ratio of peak value to rms value is significantly larger.
For instance for speech signals this ratio is often taken to be 4 (referred to as 4o loading). The SNR
for such a signal would be about 7.3 dB worse than for uniformly distributed data with an equal
peak value.

Transform lengths ranging from 16 to 256 complex values are considered. This range is con-
sistent with the transform sizes that can be accommodated using the limited internal data memory

available in current generation DSP chips.

-14 -

For the two-way results, the inverse DFT is computed using the fixed-point (forward)} DFT. If

{z.} and {X,} are a transform pair, indicated symbolically by
{Xk} = DFTN{In}) (11)

the inverse transform relationship giving {z,} in terms of { X} is

{z;}zDFTN{)]‘;'E}. ' - (12)

The factor 1/N is already included in the computation of the fixed-point DFT’s. The operations in-
volve complex conjugation of the input sequence, calculation of the (forward) DFT, ahd conjugation
of the output sequence. v

For two-way computations, the input sequence itself serves as a reference for measuring SNR.
For one-way SNR measurements, a double precision floating point DFT is used as the benchmark.
The two-way SNR for this floating point computation is over 320 dB for all sizes of DFT quoted in
this study.

A reference fixed-point result is also computed. If a fixed-point DFT is calculated with an
arbitrarily large precision at intermediate stages, errors will occur only when the final result is
converted to single precision accuracy. This situation is simulated for the one-way case by taking
the results of the double precision floating point reference, scaling them by 1/N and converting them
to fixed-point representation by rounding. For the two-way case, the original input data is scaled by
1/N and converted to single precision fixed-point representation by rounding. The SNR for these
fixed-point results is referred to in the plots as the ideal fixed-point DFT.

3.2 Assessing Bias

In attempting to assess and explain the behaviour of truncation and the various forms of round-

ing, a modified SNR definition may be used. The conventional SNR can be expressed in the form

N-1
DX
SNR = ~=0—— . (13)

> B

n=0

This conventional form of SNR measures error as
Ep = Xe — X, (14)

where X is the output of the fixed-point DFT.! In the experimental results, {X} is the pseudo-
random input sequence. This error expression penalizes changes in gain as well as shifts in the mean.

For instance, an output which is merely scaled by a constant gain will exhibit a low SNR.

T 1t is assumed that the factor of 1/N which is present in the fixed-point computations has been taken appropriately
into account.

- 15 -

Consider a modified error term,
Ep = a(X, —b) — Xk . (15)

This expression includes the constants @ and b which compensate for gain and mean respectively.
Four cases can be identified.
1

)
2) Gain Compensated SNR. a chosen to maximize the SNR, b = 0.
3) Mean Compensated SNR. a = 1, b chosen to maximize the SNR.
4) Gain and Mean Compensated SNR. Both a and b chosen to maximize the SNR.

Conventional SNR. a =1,b= 0.

The SNR for cases 2) or 3) is larger than the conventional SNR. Likewise, the combined gain
and mean compensated SNR is larger than the other SNR figures. Techniques to calculate the
constants a and b are discussed in Appendix B. The mean offset b is restricted to have equal real
and imaginary components. The offset to either the real or imaginary component will be referred
to simply as the mean offset. The main interest will be in looking at the gain and mean needed to
get the best match between the true DFT and the fixed-point DFT. The increased SNR that results
in choosing the gain and mean optimally will indicate the degree of match of the “shape” of the
DFT. This indeed may the appropriate criterion for certain applications. For instance, returning to
a speech recognition example, gain normalization is an inherent part of comparing speech segments
against stored frequency response templates. In this situation a non-unity gain factor in the FFT

computation does not affect the results.

3.3 Truncation Results

The resulting SNRT for the two forms of the DIT FFT (single precision intermediate values and
double precision intermediate values) and the DIF FFT are shown in Fig. 7 for both one-way and
two-way computations. The SNR for the direct computation of the DFT using fixed-point arithmetic
is also given in the graphs. These results are for conversion of the contents of thé double precision
accumulator to single precision by truncation. The SNR values for the ideal fixed-point DFT shown
in the graphs may be interpreted as upper bounds on the achievable performance.

A perhaps initially surprising result is that the single precision DIT FF'T algorithm outperforms
the double precision DIT FFT algorithm. Further investigation into the details of the butterfly
computation reveal that the biases due to truncation of the product and the subsequent truncation
of the differences tend to cancel in the single precision version. Theoretically, the mean offset at the

output of each single precision butterfly is half that of the double precision version. The mean offset

' To avoid ambiguity, all SNR figures quoted are conventional SNR; modified SNR figures are given as increases
over conventional SNR.

- 16 -

90 T T 1)
Legend:
L o ideal fixed-point DFT _
a direct DFT
- 80 |- hal PURN o DIT FFT (single precision) i
~~~~ - o DIT FFT (double precision)
[ o DIFFFT _
one-way
70 |- ~—— .
©
° J
60 F
<
z
[ R -
50 |~ .
40 —~
30

‘Number of complex values

Fig. 7 SNR for truncation

computed using the modified SNR definition verifies this analysis. For the one-way computation,
the single precision DIT algorithm has a mean offset of approximately —Nwyp /2, while the double
precision DIT algorithm has a mean offset of approximately — N vj.1,, where v, is the weight of the
least significant bit of a single precision value (v, = 1/32768). The increase in SNR with mean

compensation is about 1.5 dB for the single precision version and about 4 dB for the double precision

version.

The mean offset for the DIF algorithm is about the same as the double precision DIT algorithm.
As can be seen in Fig. 7, the conventional SNR for the DIF algorithm is also about the same as
that of the double precision DIT algorithm. With mean compensation, the SNR increases about 4.5
dB. This means that both forms of the DIT algorithm and the DIF algorithm have about the same
mean compensated SNR. Gain compensation does not help either DIT algorithm but does increase

the SNR for the DIF algorithm by a further 1.5-2 dB.

The direct computation of the DFT has a mean offset of about Nwy,p/2. The mean compensated
SNR is about 6 dB better than the conventional SNR and essentially the same as the conventional

SNR of the ideal fixed-point DFT.

- 17 -



3.4 Computational Error Model

Auxiliary experiments were conducted to assess the effect of varying the range of the input
data. Fig. 8 shows these results for a 128 point DFT with truncation used for the fixed-point
implementations. The input data levels are given in terms of the rms value of the pseudo-random
data relative to unity. Thus the data range of —1/\/5 to +1/\/§ used for the main results corresponds
to the —7.78 dB point on these plots. For a given transform size, the SNR varies directly with the
input level, at least for useful signal-to-noise ratios. Results for rounding and for other transform
lengths show the same variation with input level. This behaviour indicates that the error can be

modelled as being additive and independent of the signal level.

80 T T Y T T T T T T Y
Legend: ,—" J
i o ideal fixed-point DFT one way d
a direct DFT
60 g DIT FFT (single precision) i
o DIT FFT (double precision) ot
o DIF FFT o
o
©
40 | B
o
z
7]
5 -
20 two-way -
‘/
0 1 5 ° 1 | 1 1 1 1
~50 -40 -30 -20 —10 0

rms input level dB

Fig. 8 SNR as a function of the input signal level (N = 128, truncation)

Given an additive error component which is uncorrelated with the data and which is independent
and identically distributed for each sample, the SNR for a two-way computation can be expressed
in terms of the SNR for a one-way computation. Consider the model shown in Fig. 9. If the
output of the forward DFT is connected to the input of the inverse DFT, the overall output has
two error components, that due to the forward DFT and that due to the inverse DFT. The complex

conjugation operations do not affect the mean-square value of the error components. Parseval’s

- 18 -



relationship for the DFT is
N-1 N-1
N leal®= ) 1B, (16)
n=0 k=0
where {e,,} is the inverse DFT of {Ex}. The mean-square error at the output of the first stage is
er = | Ex|?. {17)

The mean-square error at the output of the second stage is

e2 = |un|® + [en?

SR
— 2, = 2
= |ual® + [ Bkl (18)
_N+1
N
The last equality comes from the fact that the energy of the complex error is the same for the inverse

and forward DFT’s, i.e. |Eg|?2 = |u,|?.

€1 .

F-=—~"~~7~777777% 1
: N Bk
Xk
{Xn* : |{N TE }
-—————P‘ - DFT
{ |
| {
| |
R J
(a) Forward transform
Fommm—mm e
| N {un} o
| |
I | Y tun e
ALHINY (PP B QS ' (O -——>t ntened
| ]
I I
l |
N

(b) Inverse transform

Fig. 9 Model for error in computing the DFET

The signal component of the output of the DFT is {X,/N}, while the signal component of the
two-way output is {z,/N}. The energies in these components are related by Parseval’s relationship
(c.f. Eq. (16})). Combining this with Eq. (17) and Eq. (18), the SNR for a two-way computation
(SNR3) can be related to the SNR for a one-way computation (SNR;),

SNR;
N+1-

It can be verified from Fig. 7 that this result is very well approximated by the experimental data.

SNR; =

(19)

For the subsequent results, only one-way SNR’s are presented — the two-way SNR’s may be derived

from Eq. (19).

- 19 -



3.5 Rounding Results

The various forms of rounding were simulated to assess their effect on accuracy for the different
DFT algorithms. In view of the many combinations of algorithm variants and rounding options, the

two classes of rounding techniques will be considered separately to simplify the discussion.

3.5.1 Conventional Rounding

First consider the DIT FFT algorithm with double precision intermediate values. Rounding
occurs as the last step in a butterfly. The DIT FFT improves 8-10 dB with rounding, with the
larger improvements occuring with the longer transform lengths. The form of rounding has almost
no effect on the SNR. The optimal gain is essentially unity and the mean offset is small. This agrees
with the notion that the mid-way values which are rounded differently for the different rounding
options occur with very small probability.

For the DIT FFT with single precision intermediate values and the DIF FFT, rounding can be
applied at two different places. The first is in the rounding of the double precision products to single
precision. Here, the exact form of rounding is unimportant since the mid-way values occur with small
probability. The second place is the point at which the sum of two single precision values is stored
in single precision. For this rounding operation, the conventional rounding schemes (up-rounding,
down-rounding, magnitude up-rounding and magnitude down-rounding) perform similarly in terms
of SNR (~ 1 dB spread). In fact for this rounding operation, in which only a single extra bit is
available on which to base the rounding, down-rounding and truncation are identical. However, it
should be noted that the biases for the different rounding schemes are not the same. As anticipated
earlier, the magnitude rounding schemes tend to result in an optimal gain different from unity but a
mean offset nearly equal to zero. The gain factor deviates from unity by about 0.08% for N = 256.
The resulting gain compensated SNR is about 4 dB larger than the conventional SNR. For up- and
down-rounding, the gain is essentially unity, but the magnitude of the mean offset is about Nvisp /2.
The resulting mean compensated SNR is about 4 dB larger than conventional SNR. Based on the
different behaviour of rounding for sums and for products, a selective rounding scheme in which
rounding {of any form) is applied only to the product and truncation used for the sum performs as
well as any of the conventional rounding schemes. Compared to truncation, rounding applied at the
product gives a 2 dB increase in SNR for the single precision DIT algorithm and a 5 dB increase
for the DIF algorithm. Table 1 shows SNR values for the FFT algorithms for a transform length of
128 using various forms of rounding at the products and sums.

In the direct computation of the DFT, rounding occurs as the last step in the process. Indeed,
extended precision results may be obtained with the only penalty being the larger storage space

required. For single precision results, the exact form of rounding does not affect the SNR. The

- 20 -



_ X truncation X up-rounding X ﬁp-rounding X stage-alternate
N =128 . . .
+ truncation + truncation + up-rounding | + stage-alternate
dp DIT 59.3 dB 68.6 dB 68.6 dB 68.6 dB
sp DIT 62.0 dB 64.3 dB 64.1 dB 68.2 dB
DIF 59.2 dB 64.5 dB 64.4 dB 68.6 dB

;.. .Table 1 SNR for-the double precision (dp) DIT, single precision (sp) DIT
and DIF algorithms for the indicated forms of rounding at the
products {x) and sums (+)

rounded results are essentially the same as that for the ideal integer DFT and about 6 dB better

than truncation.

3.5.2 TUnbiased Rounding

For the direct calculation of the DFT and the double precision DIT FFT algorithm, unbiased
rounding performs the same as conventional rounding. However for the single precision DIT FFT
and the DIF FFT, the unbiased rounding schemes offer a benefit at the sum step. The differences
between the unbiased schemes are not large, but stage-alternate rounding stands out as being slightly
better on the average {~ 1 dB) than value-alternate rounding, which is about the same as random
rounding. The stage-alternate rounding scheme is about 4 dB better than conventional up-rounding
(e.g. see Table 1).

The unbiased schemes give a useful increase in SNR for the DIF FFT and the single precision
DIT FFT. The ease of implementation is an important consideration in the use of such a scheme. Of
the unbiased schemes, stage-alternate rounding stands out as being the easiest to implement. The
rounding operation consists of adding an appropriate offset before truncating. This offset is changed
only outside the main computation loop in the FFT and hence is altered only log, N times. The
best unbiased rounding scheme also comes with very little increase in computation or program size
compared to conventional up-rounding.

As anticipated, these rounding schemes tend to result in optimal gain factors close to unity.
The magnitude of the mean offset for stage-alternate rounding is about 1/3 of that for conventional
up-rounding.! The mean offsets for the other two unbiased schemes are essentially zero. In stage-
alternate rounding, the main contribution to the mean offset is due to the last stage in which all
output values are biased in the same direction. This is consistent with the observation that the
mean offset changes sign depending on whether an even number of stages or an odd number of
stages are used. For the other two unbiased schemes, the data in the output stage is not all rounded

in the same direction. This suggests yet another alternative unbiased rounding scheme: stage-

t Stage-alternate rounding is not truly unbiased. Mean compensation increases the SNR by about 0.5 dB.

.21 -



alternate magnitude rounding. For this scheme, magnitude up- and magnitude down-rounding are
alternated. In terms of conventional SNR, this scheme performs about the same as the original stage-
alternate rounding. The disadvantage of stage-alternate magnitude rounding is the extra complexity
of magnitude rounding.

The improvements in SNR due to the use of rounding are summarized in Fig. 10 (note the
expanded vertical scale). The rounding results give the conventional SNR for up-rounding applied
to the double precision DIT and the direct DFT algorithms, and stage-alternate rounding applied

to the single precision DIT and the DIF algorithms.

Legend:
F o ideal fixed-point DFT
80 | N a direct DFT -
\\\\\ o DIT FFT (single precision)
~ RS o DIT FFT (double precision)
=
= = v DIFFFT

70 }

SNR dB

increase with
60 F rounding

1 I 1 1 1
16 32 64 128 256

Number of compliex values

Fig. 10 SNR for truncation and rounding

The high accuracy of stage-alternate rounding applied to the FFT algorithms with single pre-
cision intermediate values has important ramifications in both hardware and software requirements.
For custom hardware or custom chip implementations, significant reduction in complexity is possi-
ble if single precision registers are used rather than double precision registers. The implications of

stage-alternate rounding on the FFT execution time on a single chip DSP are examined in Section 4.

3.6 Cosine Table

An inherent part of the computation of the DFT is multiplication by a complex exponential.

For this purpose, the fixed-point implementations use a table of stored cosine values. The previously

- 22 .



generated results were given using a table of cosine values which are rounded to the nearest 16-bit
value. With fractional notation, +1 is not representable, although —1 is representable. Only the
first quadrant of the cosine table is stored. The values which would have been rounded to +1 are
stored as the largest representable positive number. The cosine in other quadrants are determined by
suitable changes in sign. Values of the sine are determined by appropriate offsets into the table and
suitable changes in sign. Note that this strategy results in the value —1 also not being represented
exactly.

Two experiments were conducted to examine alternate strategies. In the first, the cases where
the sine or cosine takes on values of +1 were trapped in the code and the implied multiplications
were avoided. This is equivalent to exact representation of the values 1. In an FFT computation
the first two or last two stages (DIT or DIF algorithms respectively) which involve only factors of +1
and 47 can be implemented as separate loops avoiding multiplications. This gets rid of most of the
multiplies by +1 but still leaves some embedded in the remaining stages. With the full avoidance of
multiplies by +1, the SNR results for the range of transform sizes considered earlier do not increase
by more than a small fraction of a dB.

One fixed-point implementation that we have seen, scales all the cosine table values downward
such that the largest cosine value is just equal to the largest representable positive fraction. Theo-
retically this strategy is not justified. In the butterfly, one branch becomes scaled while the other is
not. However, even these cosine table values do not degrade the SNR by more than a small fraction
of a dB.

These results are consistent with comments in [2] which indicate that coefficient quantization

1s not as important as computational error.

3.7 Imnput Precision

Experiments were conducted to assess the importance of data precision on the resultant SNR.
With reduced input precision, the input data retains the same range as before but lower order bits
are set to zero. For instance, this may be the situation when data is gathered from an A/D converter
with less than 16 bits of resolution. For the range of transform lengths considered earlier, the SNR
for the FFT algorithms varies only slightly (~ 0.5 dB) for the input precision decreasing to 4 bits.
This is further confirmation that the error energy is relatively independent of the form of the input

signal.

- 28 .



4. Speed of Execution on the TMS32010

In this section, the trade-offs between speed and accuracy are examined for a specific single chip
digital signal processor, the TMS32010. Efficient programs written in TMS32010 assembly language

[6] have been implemented for each of the computation procedures previously described.

.

4.1 FFT Algorithms

An important feature of the FFT algorithms considered here is that computations can be per-
formed in-place — the output values can overlay the input values. This requires bit-reverse reorder-
ing at the input (DIT algorithm) or at the output (DIF algorithm). With in-place computations,
a transform length of up to 64 complex points (N = 64) can be handled by the TMS32010 using
on-chip random access memory (RAM]) to store the data.

The bit reversal portion of the algorithms is implemented using straight-line code for maximum
speed (a listing of the program is included in Appendix C). The execution times for bit reversal are
20, 39 and 90 us for N = 16, 32 and 64 respectively.

The main part of the FFT algorithms, the butterfly computations, is implemented using looped
coding (see Appendix C). In each case, the sine and cosine values are read from a table stored in
read-only-memory (ROM). Since the argument of the sine and cosine values lies between 0 and =,
only the values for three quarter cycles of the sine function need to be étored in program ROM for
fast table look-up (the cosine values are read with a quarter-cycle memory address offset). Data
values reside in the first page (128 words) of RAM; all constants, variables, pointers and indices lie
in the second page (16 words).

The execution times {excluding bit reversal time) for the double precision DIT are shown in
Table 2. In this table rounding refers to conventional up-rounding. This is the only type of rounding
that need be applied to the double precision DIT algorithm since all rounding schemes give the same
SNR. In Table 3, rounding combinations of interest for the DIF and single precision DIT algorithms
are shown. The single precision DIT algorithm has the same execution time as the DIF algorithm.
Selective rounding refers to the use of truncation at the sums and up-rounding (or down-rounding)
at the products. The figures listed under rounding refer to up-rounding, down-rounding or stage-
alternate rounding applied at both sums and products. Note that stage-alternate rounding can be
implemented with essentially no speed penalty compared to conventional rounding. The figures for
magnitude rounding are for magnitude up- or down-rounding applied at the sums and conventional
up-rounding at the products.

From these results, several interesting observations can be made. First, rounding is relatively
inexpensive in terms of execution time, yet increases the SNR by a considerable amount in all cases.

For example, the processing time for the double precision DIT algorithm with rounding is increased

-2 -



Execution time us
N Truncation o Rounding
16 420 453
32 1018 1082
64 2371 2523

‘Table 2 Execution time for double precision DIT

Execution time us
N Truncation Sel. round. Rounding Mag. round.
16 378 391 404 442
32 890 922 954 1050
64 2067 2143 2219 2447

Table 3 Execution time for DIF and single precision DIT

by only 6% compared with truncation. For DIF and single precision DIT, this increase is less than
4% for selective roundiﬁg, about 7% for stage-alternate rounding, and about 18% for magnitude
rounding.

In Section 3, stage-alternate rounding applied either to the single precision DIT or the DIF
algorithm stood out as giving a high SNR, about the same as that for the double precision DIT
algorithm with rounding. When comparing the speed figures, it can be seen that the schemes using

stage-alternate rounding are somewhat faster (~ 12%) than the double precision DIT algorithm.

4.2 Direct Computation

Earlier it was found that of the methods considered, direct computation of the DFT has the
highest accuracy. With rounding it performs the same as the ideal fixed-point DFT. The main
drawback of this method is the number of computations, which grows in proportion to the square
of the transform length.

An important problem with the direct method is that the computations cannot be done in-
place, i.e., the input and output must be stored in separate locations in memory. In the case of the
TMS32010, this limits the maximum length of the DFT to 32 complex points. Another problem is
that the argument of the sine and cosine values needed for the multiplications can lie outside the
range of 0 to 2m. Therefore, modulo 27 resolution of the argument is required, which for general N
can be time consuming. However, if the transform length N is a power of two, modulo 2 resolution

becomes equivalent to a bit masking operation. For fast table look-up, values for one and a quarter

- 25 .



cycles of the sine function are stored in read-only memory {ROM). Another factor which slows down
execution is the operation of arithmetic right shift on a 382-bit quantity (for scaling), which cannot
be implemented efficiently on the TMS32010. The direct computation is coded on the TMS32010
using looped coding (see the program listing in Appendix C).

For efficient coding of the inner loop, auxiliary registers are used as both pointers and loop
counters. Data values occupy the first page of RAM; while constants, variables, pointers and indices
are all located in the second page. ’

Table 4 shows the execution time of a direct DFT computation for N = 16 and 32 for both
rounding and truncation. The execution time is approximately equal to 10.2N2 + 4Nps if N is a

power of two.

Execution time us
N Truncation Rounding
16 2677 2690
32 10575 10600

Table 4 Execution time of direct DFT computation

The results show that rounding is a small fraction of the execution time, since it is done only
once for each output point. The time required to perform a 16-complex-point DFT (2.7 ms) surpasses
that of a 84-complex-point DFT implemented with the double precision DIT algorithm (2.5 ms, with
rounding). In general, the direct DFT is to be only recommended when high accuracy is needed.

In some applications a large fraction of the input points are known to be zero, or only some
of the output points are needed. In this case the execution time can become proportional to the
product of the number of non-zero input points and the number of desired output points, rather

than N2. These changed circumstances might warrant a reappraisal of the relative merits of the

direct DFT and the FFT algorithms.

- 26 -



5. Summary and Conclusions

In this report, a new scaling bound for scaling DFT computations has been developed. The
bound is in terms of the easily tested magnitudes of the real and imaginary parts of the input
sequence. This bound can be used to guarantee that all intermediate and output values in the
decimation-in-time FFT algorithm are representable in fixed-point notation.

A systematic method to measure the bias in arifhmetic operations has been developed. The
resuiting gain and mean compensated signal-to-noise ratio is a measure of the match in the spectral
shape. This allows the comparison of different versions of the FFT algorithms and different forms
of rounding taking into account these biases.

In some applications such as transform coding of speech and video, the two-way performance
of fixed-point transforms is important. In this report, the signal-to-noise ratio for a two-way com-
putation has been shown to be simply related to that for a one-way transform. Experimental data
shows that this relationship accurately predicts the two-way performance.

Several rounding methods for use with the FFT algorithms have been examined. Truncation
1s of course the fastest of the options. However, rounding significantly improves the accuracy of all
of the implementations considered. The improvement seems worthwhile for all forms of the DFT in
light of the moderate speed penalty on a TMS32010 or similar signal processor.

In this report, several procedures for implementing the discrete Fourier transform of a set of
samples on a 16-bit fixed-point processor have been examined. If speed is paramount, the DIF
algorithm with truncation is a good choice. It is one of the two fastest schemes, yet its mean
compensated SNR is high, indicating that it preserves the signal shape. Indeed, a simple modification
to add in a constant value at the last stage of the computation might be considered to implement
compensation for the mean offset.

If both accuracy and speed are important considerations, the single precision DIT algorithm with
a new form of rounding, dubbed stage-alternate rounding, is a good candidate for implementation.
It has a high SNR, the rounding involves only a small increase in computation time over truncation,
and it offers an increased input dynamic range (input scaling to 7/4 rather than 1/\/5 as in the DIF
algorithm).

Stage-alternate rounding gives high accuracy without the need for full double precision accurﬁu-
lation. This translates to reduced execution time for a single chip DSP implementation or reduced
complexity for hardware and custom chip implementations. In addition, stage-alternate rounding
can be applied profitably to other fast DFT algorithms. Most such algorithms have in common
the partitioning of the computation into stages and modules roughly analagous to the stages and
butterflies of a conventional FFT. As such, the use of single precision intermediate values in these

modules can be beneficial in reducing execution time or complexity.

-27.



Appendix A. Maximum Magnitude of the DFT Components

This appendix develops bounds on the maximum magnitudes of the real and imaginary parts of
a complex sequence that result in the magnitude of the real and imaginary parts of the corresponding

DFT being less than a given value.

A.1 Maximum Output Values

The output of the DFT can be written as

il 2mnk 2mnk
Re[ X} = z_: (Re[zn]cos —Im|z,]sin N ] ,
n=0 (A.1)
= 27nk 27nk
Im|X,] = [Im[zn] cos + Re|z,]sin ) .
n=0
Let the input be bounded as follows,
IRe[:an <a and IIm[xn” <a. (A.2)

With these input constaints, the magnitude of Re[Xj] for a particular k is maximized when the real

and imaginary parts of x, are chosen to have a magnitude a and a sign chosen to match that of the

sine and cosine terms, viz.,
27nk

Re|z,] = asgn[cos ——] ,
N (A.3)
Im|z,] = —asgn[sin 27rnk]
n g N :
Then the real part of the output is bounded as follows
N-1
27nk . 2mnk
|Re[Xx]| < a,ng_:o (lcos N | + [sin N [] . (A.4)

The maximum magnitude of Im[X] is obtained in a similar manner and has the same expression.

Consider the normalized sum,

N-1
SN = % Z (|cos 27;”6{ + |sin 21;:;]6 |] . (A.5)

n=0

The maximum output values can be expressed as

|Re[Xx]| < NaSkn - (A.8)

- 28 -



A.2 Bounds on the Normalized Sum

There are three cases to consider in calculating Si n.
1) k=0. Then So n = 1.
2) k divides N. Let K = GCD(k, N) be the greatest common divisor of k and N. There are

N/K distinct values of the arguments of the sine and cosine terms, each visited K times.

Then Sk,N = Sl,N/K-
3) k relatively prime to N. The arguments of the sine and cosine terms step through all values
27rl/N, l=0,...,N—1. Then Sen = Sl,N-
These relationships mean that only terms of the form Sg ps or S1 a need be evaluated. Consider
the term S; ns, where
1 M 27n 27n
SI’M:—an::O Ucosvl—l—lsinﬂn . {A.7)
Consider the case that M is a multiple of 4. Then the two terms in the sum contribute equally to
the overall result, and the sum for n < M/2 is equal to the sum for n > M/2. Let M = 4K,

2K -1

1 . ™
S1,4k = I z sin K

n=0
2K -1

% Im { Z:O fol (A.8)

S KT
KSIII—

4K

It can be shown that Sy 4x increases monotonically from 1 to 4/x with increasing K,
4
1< S14k < - (A.9)
vy

It remains to be shown that the same bounds hold for M not a multiple of 4. If the number of
terms M is even but not a multiple of 4, the sum defining S 2ar can be separated into a sum over the
even numbered terms and a sum over the odd numbered terms. This tack can be used to show that
S1,am is equal to Sy aar. Similarly for M odd, by separating even and odd terms, it can be shown
that Si ar is equal to S 2pg, which in turn is equal to Sy 4ps. This completes the equivalences: the
sum with an odd number of terms is the same as the sum with 4 M terms; the sum with an even
number (but not a multiple of 4) of terms is the same as the sum with 2M terms. Fig. A.1 shows

the values of Sy ar as a function of M. It can be seen that this sum quickly approaches its upper

bound for moderate values of M.

A.3 Application to the DFT

A bound on the magnitude of the real and imaginary parts of the output of a DFT of length

N is found by calculating all values of S y for £ = 0,..., N — 1. The maximum over k of Sk n is

- 29 -



13 —T T T T T T T T T
4 e e e e - —
e s o WDMDWM“—
[~ o o ol N
S1M
12 F = -
Legend:
s Modd
o Meven (nota muitiple of 4) i
o M muitiple of 4
1.1 L J
1 ==~ O— = ——— O e e i e Ve n e m  rm — —— = = e = - o]
1 1 ] 1 1 1 1 1 ]
1 2 4 8 16 32 64 128 256

Fig. A.1 Value of the sum Sy apr

easily shown to be equal to S; . Note however that the maximum value can occur for values of k
other than one. The bounds on Si n lead to bounds on the DFT output values (see Eq. (A.6)). For
k=0,1,...,N —1,

4
|Re[XkH < NaSk,N < Na,Sl,N < Na— ,

Z (A.10)
IIlekH < NaSk,N < NaSl,N < Na; .

For particular values of N and k, the value of Si ny provides a bound on the DFT value. This
bound is tight in the sense that a worst case input sequence can be devised such that either |Re[Xk]|
or ’Im[XkH takes on the value NaS; n. For a particular N, Sy n provides a bound on all output
values. For all but very small values of N, the rightmost bound gives a convenient and reasonably
tight bound on all output values.

If the input sequence is purely real, separate bounds on the real and imaginary parts of the
output sequence can be found. The techniques to generate the bounds are similar to those used

above. The real part of the output for a real input sequence is bounded by Na, while the imaginary

part of the outputv is bounded by Na2/m.

- 30 -



Appendix B. Gain and Mean Compensated Error

Consider a difference of complex values of the form

Dy =a(Y,—b)— Xy . (B.1)
The real factor ¢ and the complex factor b may be used to compensate for differences in gain and
mean value between the reference signal X and the test signal Y,. In general, the real and imaginary
parts of b may be chosen independently. However in many practical situations involving the use of
the DFT for a complex sequence, it 1s more reasonable to require that the mean offset for the real
and imaginary components be the same. With this requiremerit, the resulting formulation is the
same as that which results when the real and imaginary parts of the data are considered to be
concatenated into a sequence of real data of twice the length. This being so, for ease of exposition,

the discussion that follows assumes real data, with a real gain factor ¢ and a real mean offset b.

The sum of the squared difference terms can be expressed as

N-1
e= Z D? . (B.2)

k=0
A conventional squared error is obtained with ¢ = 1 and b = 0. The difference term for this case will

be denoted by Ej where Ex = Yi — Xi.. The following subsections will consider optimized values

for @ and b. However, first a shorthand notation for some sums is introduced,

N-1 N-1 N-1
So=> Xe, S,=> Y, S.=)Y E. (B.3)
k=0 k=0 k=0

Sums of cross-products and squared terms can be similarly denoted as follows,

N-1 N-1
Sa:a: = Z X[f y szy = Z XkYk 3
k=0 k=0
N-1 N-1
Syy = Z Yk2 ) See = E,% ) (B-4)
k=0 k=0

N-1
Sey = Y EYy .
k=0

B.1 Mean Compensated Squared Difference

If a = 1, then the optimal b is easily found as a difference in sample means

Sy — Sz

i A
B.5
s (B.5)

=¥
and the resulting mean compensated squared difference as

52
= 8. - = . B.6
€ N (B.6)

The first term represents the squared error for a conventional definition, while the last term represents

the decrease with mean compensation.

-~ 81 -



B.2 Gain Compensated Squared Difference

If b = 0, the optimal a can be expressed as a normalized cross-correlation sum

Sey

I

95)

v (B.7)

and the resulting gain compensated squared difference can be written as

2
= Sa:a: -
© Syy
v (B.3)
= See — =
Syy

The last term in the last line represents the decrease with gain compensation. For small differences,
the squared difference as expressed in the first line of the equation involves the difference between
two terms of almost equal magnitude. This can lead to numerical problems. For this reason, a

formulation using the error sums as in the last line of the equation is preferred for computations.

B.3 Gain and Mean Compensated Squared Difference

Some observations will help in simplifying the analysis for this case. Given the gain a, the value

b which minimizes }_, D? will set the mean of the 3, Dy to zero,

N-1
> Dy =aS,~ 8, — abN
it (B.9)

=0.
The factor b can be considered to consist of two components — one which compensates for the mean
of X and another which compensates for the mean of Y;,. With this choice of b, the factor a can
be chosen to minimize the sum of the squared difference of the two zero mean sequences. Consider

a new set of zero mean variables

Xllc:ch_’S_zx Ylé:Yk—i’
é" N (B.10)
B.=E- .

The gain compensated case can now be applied to this new set of variables. The optimal a is given

by

a=1- Sy , (B.11)
Sylyl
where the sums of the primed variables are defined as
sz S8, (B.12)
Syryr = Syy — N Sery' = Sey — N ’

- 82.



The resulting gain and mean compensated squared difference is

S2I 1
E = Se'e' - €y , (B13)
Syryr
where
52
Setgt = See — == . B.14
5 (B.14)

This expression have been arranged such that the computations-can be carried out entirely in terms
of the sums S., S, See, Syy, and S.y. This formulation tends to avoid numerical difficulties in
calculating the sum of the squared differences when the error is small. The value of b which sets the

mean of the error to zero can be expressed in terms of a (see Eq. (B.9)). Replacing a by its optimal

value,

b _ -]:_ [SeSyy - Sysey] ) (B15)

N | Syy — Seryr

-89 -



Appendix C. TMS320 Routines

This appendix contains program sections for implementing the various DFT algorithms on a TI

TMS320 processor.

C.1 Bit Reversal

This program section performs bit-reversed reordering on a complex array (real and imaginary
arrays) of data. This is implemented in straight line code for the particlar transform length of
interest. The example which follows gives the code for bit reversal for the case of a 16-point radix-2
transform. The data is asumed to reside in RAM. The constants X0 and YO denote the starting

memory address of the real and imaginary arrays respectively.

* Bit reverse X array (real part)

SWAP X0+1,X0+8
SWAP X0+2,X0+4
SWAP X0+3,X0+12
SWAP X0+5,X0+10
SWAP X0+7,X0+14
SWAP X0+11,X0+13

* Bit reverse Y array (imaginary part)

SWAP YO+1,Y0+8

SWAP YO+2,Y0+4

SWAP YO+3,Y0+12

SWAP Y0+5,Y0+10

SWAP YO+7,Y0+14

SWAP YO+11,Y0+13

END
¥ —m Macro for swapping content of two memory locations-------
SWAP $MACRO A,B

LARK ARO, :A:

LARK AR, :B:

LAC *,0,1 ;load accumulator with A

SACL TEMP ;8tore in temporary location

LAC *,0,0 ;load accumulator with B

SACL *,0,1 ;8tore in A

LAC TEMP ;retrieve A from temporary location

SACL *,0,0 ;8tore in B

$END

-8 -



C.2 Double Precision DIT FFT

This program section implements a radix-2 decimation-in-time FFT of a set of fixed-point
complex values. The butterfly computations employ double precision computations as far as possible.
The input values-are assumed to be stored in bit-reversed order.

LACK i
SACL LE ;LE=1
SACL L ;L=1
LACK FFTSIZ ;FFT size
SACL DIVLE1
D0260 LAC LE, 1
SACL LE1 ;LE1=2%LE
LAC DIVLE1L, 15 ;DIVLE1=FFTSIZ/LE1
SACH DIVLEL
LACK 0
SACL X ;K=0
D0240 LACK C0So
LT K
MPY DIVLE1L
APAC
SACL SIN
TBLR Ccos ;read cosine
LACK SINO-COSO
ADD SIN
TBLR SIN ;read sine
LAC K
SACL I ; I=K
ADD ONE
SACL K ;K=K+1

* Butterfly loop start

D0220 LAC I
ADD LE
SACL J ; J=I+LE

* get up pointers for Y(I) and Y(J)

LACK YO ;start of y-array

ADD I ;x-array starts at zero
SACL PYI

LACK YO

ADD J

SACL PYJ

- 35 .



LAR
LT
MPY
-PAC
LAR
LT

SPAC
SACH
SACL

MPY
PAC
LT

MPY

APAC -

SACH
SACL

LAR
LAC
SUBH
SUBS
ADD
SACH

LAC
ADDH
ADDS
ADD
SACH

LAR
LAC
SUBH
SUBS
ADD
LAR
SACH

LAC
ADDH
ADDS
ADD
SACH

LAC
ADD
SACL

ARO,J
*,1
cos

AR1,PYJ
*,0
SIN

HBIT1
LBIT1

cos

*,1
SIN

HBIT2
LBIT2

AR1,T
*,15,0
HBIT1
LBIT1
ONE, 15
*,0,1

*,15

HBIT1
LBIT1
ONE, 15

*

AR1,PYI
* 15,0
HBIT2
LBIT2
ONE, 15
ARO,PYJ
*,0,1

*,15

HBIT2
LBIT2
ONE, 15
*,0,0

LE1

A RN

L

:X(J)*cos-Y(J)*sin

;Y(J)*cos+X(J) *sin

;rounding

;rounding

;rounding

;Tounding

; I=I+LE1

- 86 -



LACK NM1

SUB I

BGEZ D0220 ;IF (I.LE.N-1) GO TG D0220
LAC " *» K

SUB . LE

BLZ D0240 ;IF (K.LE.LE-1) GO TO D0240
LAC LE1

SACL LE ; LE=LE1

LACK 1

ADD L

SACL L ;L=L+1

LACK LOG2N

SUB L

BGEZ DD260 ;IF (L.LE.LOG2N) GO TO DD260
END

C.3 Single Precision DIT FFT

This program section implements a radix-2 decimation-in-time FFT of a set of fixed-point
complex values. The input values are assumed to be stored in bit-reversed order.

LACK 1
SACL LE ‘ ;LE=1
SACL L ;L=1
LACK FFTSIZ ;FFT size
SACL DIVLE1

D0260 LAC LE,1

SACL LE1 ;LE1=2+LE
LAC DIVLE1, 15 ;:DIVLE1=FFTSIZ/LE1
SACH DIVLE1
LACK 0
SACL K :K=0

.97 -



D0240C  LACK C0s0

LT K

MPY DIVLE1

APAC

SACL - SIN -

TBLR i3 COS i ;read cosine
LACK SINO-C0S0

ADD SIN

TBLR SIN ;read sine
LAC K

SACL I ;I=K

ADD ONE

SACL K ;K=K+1

* Butterfly loop start

D0220 LAC I
ADD LE
SACL J ; J=I+LE

* set up pointers for Y(I) and Y(J)

LACK YO ;start of y-array
ADD I ;x-array starts at zero
SACL PYI

LACK YO

ADD J

SACL PYJ

LAR ARO,J

LT *,1

MPY cos

PAC

LAR AR1,PYJ

LT *,0

MPY SIN .

SPAC

ADD ONE, 14 ;rounding

SACH UR,1 ;X(J)*cos-Y(J) *sin
MPY cos

PAC

LT *,1

MPY SIN

APAC

ADD ONE, 14 ;rounding

SACH UI,1 ;Y(J) *cos+X(J) *sin

- 38 -



LAR
LAC
SUB
ADD
SACH

ADDH
SACH

LAR
LAR
LAC
SUB
ADD
SACH

ADDH
SACH

LAC
ADD
SACL

LACK
SUB
BGEZ

LAC
SUB
BLZ

LAC
SACL

LACK
ADD
SACL

LACK
SUB
BGEZ

END

ARLI
*,15,0
UR, 15
ONE, 15
*,0,:1:.

UR
*,0

ARO,PYJ
AR1,PYI
*,15,0
UI,15
ONE, 15
*,0,1

UI

*,0,0

LE1

NM1

D0220

LE

D0240

LE1
LE

|

LOG2N

D0260

;Tounding

;rounding

; I=I+LE1

;IF (I.LE.N-1) GO TO D0O220

;IF (K.LE.LE-1) GO TO D0240

; LE=LE1

;L=L+1

;IF (L.LE.LOG2N) GO TO D0260

-89 -



C.4 DIF FFT

This program section implements a radix-2 decimation-in-frequency FFT of a set of fixed-point
complex values. The butterfly computations employ double precision computations as far as possible.

The output values are stored in bit-reversed order.

LACK FFTSIZ ;FFT size
SACL LE ;LE=FFTSIZ
LACK 1
SACL DIVLE
SACL L ;L=1
DD260 LAC LE, 15
SACH LE1 ;LE1=LE/2
LACK 0
SACL K ;K=0
D0240 LACK C0S0
LT K
MPY DIVLE
APAC
SACL SIN
TBLR cos ;read cosine
LACK SINO-C0SO
ADD SIN
TBLR SIN ;read sine
LAC K
SACL I ; I=K
ADD ONE
SACL K ;K=K+1

* Butterfly loop start

DG220 LAC I
ADD LE1
SACL J ; J=I+LE1

* gset up pointers for Y(I) and Y(J)

LACK YO ;start of y-array

ADD I ;x-array starts at zero
SACL PYI

LACK YO

ADD J

SACL PYJ

- 40 -



LAR
LAR

LAC
SUB
ADD
SACH

ADDH
SACH

LAR
LAR

LAC
SUB
ADD
SACH

ADDH
SACH

LT
MPY
PAC
LT
MPY
APAC
ADD
SACH

LAR

MPY
PAC
LT
MPY
SPAC
ADD
SACH

LAC
ADD
SACL

LACK
SUB
BGEZ

LAC
SUB
BLZ

ARO,I
AR1,J

*,16,1
*,15
ONE, 15
UR

*,0
*

ARO,PYI
AR1,PYJ

*,15,1
*,15

ONE, 15
UI

UR
SIN

ONE, 14
*,1

AR1,J
cos

UI
SIN

ONE, 14
*,1,0

LE

NM1

D0220

LE1
D0240

;rounding

;rounding

;Tounding

;rounding

; I=I+LE

; IF (I.LE.N-1) GO TO D0220

;IF (K.LE.LE1-1) GO TO D0240

- 41 -



LAC LE1

SACL LE ; LE=LE1

LAC DIVLIE,1

SACL DIVLE

LACK 1

ADD L

SACL L ;L=L+1

LACK LOG2N

SUB L

BGEZ D0260 ;IF (L.LE.LOG2N) GO TO D0260

END

C.5 Direct DFT

This program section implements the direct computation of the DFT of fixed-point complex
values. Although this program is designed to work for N equal to a power of 2, it will also work
for any other value of N (less than 32) provided that the modulo N resolution code is modified
accordingly.

LAC NM1

SACL I ; I=N-1
DO100 ZAC

SACL SUM1H

SACL SUM1L : ; SUM1=0

SACL SUM2H

SACL SuM2L ; SUM2=0

LARK ARO,XI15 ;pointer to last element of XI

LARK AR1,YI16 ;pointer to last element of YI
D0200 SAR ARO,K

MODN I,K,NM1,IKMODN ; IKMODN=MOD (I*K,N)

COSIN IKMODN, SINO,C0S0O,C0S,SIN ;get sine and cosine values

- 42 -



LT *,1

MPY cos

PAC

LT *-,0

MPY SIN

SPAC ; ACCUM=X (K) *cos-Y{(K) *sin
RSHIFT LG2NM1 , MASK ;8hift product LOG2N-1 bits
ADDH SUM1H

ADDS SUM1L

SACH SUM1H

SACL SUM1L ; SUM1=SUM1+ACCUM

MPY Ccos

PAC

LT *

MPY SIN

APAC ; ACCUM=Y (K) *cos+X(K) *sin
RSHIFT LG2NM1 , MASK ;shift product

ADDH SUM2H

ADDS SUM2L

SACH SUM2H

SACL SUM2L ; SUM2=8UM2+ACCUM

BANZ D0200 ;IF (K.NE.O) GO TO D0O200
LAR ARO,PXD

ZALH SUM1H ;rounding

ADDS SUM1L

ADD ONE, 15

SACH *-,0,1

SAR ARO,PX0 ;8tore X0(I)

LAR AR1,PYO

ZALH SUM2H ;rounding

ADDS SUM2L

ADD ONE, 15

SACH *-,0,0

SAR AR1,PYO ;store YO(I)

LAC I

SUB ONE

SACL I ;I=I-1

BGEZ D0100 ;IF (I.GE.O0) GO TO 100
END

- 48 -



MODN  $MACRO

I,K,NM1, IKMODN

LT I

MPY :K:

PAC

AND :NM1:

SACL : IKMODN :

$END
L Macro for reading sine & cosine values from table
COSIN $MACRD IKMODN, SINO, C0SO,COS, SIN

LACK :SINO:

ADD : IKMODN :

TBLR :SIN:

LACK :C080:

ADD : TKMODN :

TBLR :C08S:

$END
o —— Macro to perform arithmetic right shift -------
e iinte on 32-bit content of accumulator------------
RSHIFT $MACRO SHIFT,MASK

SACH TRH

SACL TRL

LAC TRL, 16-:SHIFT:

SACH TRL

LAC :MASK:

AND TRL

ADD TRH, 16-:SHIFT:

$END

-44-



-

References

A. V. Oppenheim, Ed., Applications of Digital Signal Processing, Prentice-Hall, 1978.

T.-Théng and B. Liu, “Fixed-point fast Fourier transform error analysis”, IEEE Trans. Acous-
tics, Speech, Signal Processing, vol. ASSP-24, pp. 563-573, Dec. 1976.

J. W. Cooley, P. A. Lewis, and P. D. Welch, “The fast Fourier transform algorithm: Program-
ming considerations in the calculation of sine, cosine and Laplace transforms”, J. Sound Vib.,
vol. 12, pp. 315-337, July 1970.

M. J. Narashimha and A. M. Peterson, “On the computation of the discrete cosine transform”,
IEEE Trans. Commun., vol. COM-26, pp. 934-936, June 1978.

A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice-Hall, 1975.
Texas Instruments, TMS32010 User’s Guide, Texas Instruments, 1983.

- 45 -



