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Abstract

This report examines the time windows used for linear prediction (LP) analysis of speech. The goal
of windowing is to create frames of data each of which will be used to calculate an autocorrelation
sequence. Several factors enter into the choice of window. The time and spectral properties of
Hamming and Hann windows are examined. We also consider windows based on Discrete Prolate
Spherical Sequences. It is demonstrated that with a proper choice of the time-bandwidth parameter,
a DPSS window is close to a Hamming window. Multiwindow analysis biases the estimation of
the correlation more than single window analysis. Windows for transform coding should be split
evenly between analysis and synthesis to maximize the signal-to-(coding)-noise ratio. This report
also considers asymmetrical windows as used in modern speech coders. The frequency response
of these windows is poor relative to conventional windows. Finally, the presence of a “pedestal”
in the time window (as in the case of a Hamming window) is shown to be deleterious to the time
evolution of the LP parameters.
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Time Windows for Linear Prediction of Speech

1 Introduction

This report examines time windows used in linear prediction (LP) analysis of speech. The goal of
the windowing is to create frames of data each of which will be used to calculate an autocorrelation
sequence. The low-order correlation values are used to generate a LP fit to the speech spectrum.
Several factors enter into the choice of window. Both the time and frequency properties are impor-
tant. The properties of Hamming and Hann windows are examined. A modified version of these
windows is suggested.

We also consider windows based on Discrete Prolate Spherical Sequences (DPSS). It is demon-
strated that with a proper choice of the time-bandwidth parameter, a DPSS window is close to
a Hamming window. Multiwindow analysis can be implemented using an orthonormal family of
DPSS windows. The DPSS windows have the property of maximally concentrating the energy in
the main lobe of the frequency response. Multiwindow analysis biases the estimation of the corre-
lation more than single window analysis. This report also considers asymmetrical windows as used
in modern speech coders. The frequency response of these windows is poor relative to conventional
windows. Finally, the presence of a “pedestal” in the time window (as in the case of a Hamming
window) is shown to be deleterious in the time evolution of the LP parameters.

2 Linear Predictive Analysis

Linear predictive analysis fits an all-pole model to the local spectrum of a (speech) signal. The
model is derived from the autocorrelation sequence of a segment of the speech. The LP spectral fit
is determined by solving a set of linear equations based on the correlation values.

Let the input signal be x[n]. This signal is windowed,

xw[n] = w[n]x[n]. (1)

The linear prediction formulation minimizes the difference between the windowed signal and a
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linear combination of past values of the windowed signal,

e[n] = xw[n] −
Np∑
k=1

pkxw[n − k]. (2)

The goal is to minimize the total squared error,

ε =
∞∑

n=−∞
|e[n]|2. (3)

For the case that the window is finite in length, the terms in the sum for the squared error will be
non-zero only over a finite interval.

The predictor coefficients (pk) which minimize ε can be found from the following set of equations

⎡
⎢⎢⎢⎢⎣

r[0] r[1] · · · r[Np − 1]
r[1] r[0] · · · r[Np − 2]
...

...
. . .

...
r[Np − 1] r[Np − 2] · · · r[0]

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

p1

p2

...
pNp

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

r[1]
r[2]
...

r[Np]

⎤
⎥⎥⎥⎥⎦ . (4)

The autocorrelation values are given by

r[k] =
∞∑

n=−∞
xw[n]xw[n − k]. (5)

Again for finite length windows, the sum needs be evaluated only over a finite interval — the rest
of the correlation coefficients will be zero. In vector-matrix notation,

Rc = r. (6)

Let the prediction error filter be denoted by A(z),

A(z) = 1 −
Np∑
k=1

pkz
−k. (7)

The autocorrelation formulation for the optimal prediction coefficients gives a matrix R which is
Toeplitz. The Levinson-Durbin algorithm can be used to efficiently solve for the predictor coeffi-
cients. The prediction error filter (A(z)) will be minimum phase and the corresponding synthesis
filter 1/A(z) will be stable. The frequency response (power spectrum) of the synthesis filter serves
as a model of the signal spectrum.
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3 Time Windows in Linear Prediction Analysis of Speech

The focus is on discrete-time windows, but lessons from continuous-time still apply. A continuous-
time window which is discontinuous (for example, a rectangular window) has a frequency response
that falls off as 1/f asymptotically. A continuous-time window which is continuous but with a
discontinuous first derivative (for example, a triangular window) has a frequency response that falls
off as 1/f2. A continuous-time window which is discontinuous in the second derivative (for example,
a Hann window) has a frequency response that falls off asymptotically as 1/f3. Smoothness implies
a more rapid fall off. However, smoothness also implies that the effective length of the window can
be substantially less than the full length.

The effect of a time window can be described in the frequency domain as a convolution of
the frequency response of the window with the frequency response of the signal. The convolution
smears frequency features, with the amount of smearing depending on the width of the main lobe
of the window frequency response. In addition, spectral leakage from distant frequency components
will occur if the sidelobe level of the window response is too large.

Additional bandwidth expansion prior to LP analysis can implemented by lag windowing the
autocorrelation sequence, often with a Gaussian window. Lag windowing will not be explored in
this report. See [1] for more on bandwidth expansion.

One important property of windows is the window length. In speech coding, a window length
of 30 ms (240 samples at a sampling rate of 8 kHz) has been found to be a reasonable compromise
in terms of the dynamics of speech production. The window has to be long enough that correlation
values can be estimated by averaging lagged values, but not too long such that the local statistical
properties of the signal change significantly within the window span. In fact, the update interval is
often smaller than the window lengths (20 ms or 160 samples, for instance). This means that the
windows used for LP analysis of adjacent frames overlap. This window length will be a constant
for our window comparisons. It is to be noted, that speech coding systems offer some robustness
to poor LP analysis. For most speech coders, the LP residual signal is coded for transmission and
can compensate somewhat for inadequate spectral (LP) modelling.

3.1 Hann and Hamming Windows

Hann and Hamming windows fall in the class of raised-cosine windows. They are both commonly
used in speech and audio processing. In Appendix A, both standard and modified versions of the
raised-cosine windows are developed by sampling a continuous-time raised-cosine window. The
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standard definition for an N -sample window is

w[n] =

⎧⎨
⎩

1+α

2
− 1−α

2
cos(

2πn

N − 1
), 0 ≤ n ≤ N − 1,

0, elsewhere.
(8)

Altering α allows the characteristics to change from a rectangular window (α = 1), to a Hamming
window (α = 0.08), to the Hann window (α = 0). Note that for the standard Hann window, the
end points are zero.

The (modified) Hann and Hamming windows are given by1

w[n] =

⎧⎨
⎩

1+α

2
− 1−α

2
cos

(π(2n + 1)
N

)
)
, 0 ≤ n ≤ N − 1,

0, elsewhere.
(9)

Appendix A analyzes the modified Hann windows both from the point of view of a product of time
sequences (modulation) and as a convolution of time sequences.

The overall normalized frequency response for the Hann window is plotted on a dB scale in Fig. 1.
As expected, the smoothness of the window (continuous-time version smooth up to the second
derivative), leads to a steep fall-off of the sidelobes, although the first sidelobe is uncomfortably
large at only 31.5 dB down.
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Fig. 1 Normalized frequency response of a modified Hann window (N = 240). The
broken horizontal line is at −31.5 dB.

1The modified versions of the Hann and Hamming windows appear in Mitra [2], although there they are symmet-
rical about zero and have an odd number of coefficients.
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For the Hamming window α = 0.08. In effect the window sits on a rectangular pedestal.
The pedestal increases the attenuation of the near-in sidelobes in the frequency response (see
Appendix A). However, the addition of the pedestal makes the overall function discontinuous.
Thus the Hamming window has better near-in sidelobe suppression at the expense of poorer far-
out suppression. This is illustrated in Fig. 2 which can be compared to the corresponding figure
for the Hann window (Fig. 1). The minimum sidelobe attenuation is 42.7 dB.
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Fig. 2 Normalized frequency response of a modified Hamming window (N = 240).
The broken horizontal line is at −42.7 dB.

For a Hann or Hamming window with 8 kHz sampling, the main lobe width of the frequency
response is 133 Hz between zero crossings.

4 Discrete Prolate Spheroidal Sequences

The discrete prolate spheroidal sequences (DPSS’s) are those finite length sequences which concen-
trate the maximum amount of energy in a given bandwidth [3]. The DPSS’s are parameterized by
the time bandwidth product NW , where W is the normalized one-sided bandwidth in Hz. There
is no closed form for these windows.2 However, windows are most often pre-computed and stored,
so the complexity of the functional description of the window shape need not be a concern.3

Like the Hamming window, the DPSS’s also sit on pedestals. The DPSS window which has the
most energy within |ω| ≤ 3.5π/N (NW = 1.75) closely matches the central part of a Hamming
window. These two windows are plotted in Fig. 3. The solid line is the modified Hamming window

2The discrete prolate spheroidal sequences can be calculated using the dpss function in Matlab.
3The Kaiser window [4] is an approximation to the zeroth order DPSS.
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(N = 240). The dashed line is the discrete prolate spheroidal sequence of the same length. The
DPSS sequence has been normalized such that the interpolated value mid-way between the largest
samples is unity.
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0.8

1

0 N/4 N/2 3N/4

DPSS NW=1.75
DPSS NW=1.84
Hamming

Fig. 3 Discrete prolate spheroidal sequence window, time-bandwidth product NW =
1.75 (solid line) and DPSS window, time-bandwidth product NW = 1.84 (lower dashed
line). Also shown is the Hamming window (upper dashed line). The DPSS windows
have been normalized to have a maximum height of unity. All windows have length
N = 240.

The normalized frequency response of the DPSS window is plotted in Fig. 4. The main lobe
width is slightly smaller than that for either the Hann or Hamming window. The first sidelobe
attenuation (38.8 dB) is between that for a Hann window (31.5 dB) and that for a Hamming
window (42.7 dB). Likewise, the rate of fall-off of the side-bands is also between that of the Hann
and Hamming windows.

For the sample DPSS above, the bandwidth was chosen so that the central part of the time
window closely matches the Hamming window. Choosing the time-bandwidth product to be NW =
1.84 gives a main lobe width in the frequency domain equal to that of the Hamming window. For
this choice of bandwidth, the first sidelobe attenuation is now 40.5 dB. The pedestal on which the
window sits is reduced (see Fig. 3).

4.1 Multiwindow Analysis with DPSS Windows

The DPSS window above is the first in a family of orthogonal windows for multiwindow (multitaper)
spectral analysis [3]. The number of windows (M) with significant concentration of energy in the
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Fig. 4 Normalized frequency response of a discrete prolate spheroidal sequence win-
dow (time-bandwidth product NW = 1.75, N = 240). The broken horizontal line is at
−38.8 dB.

given bandwidth is determined by the time-bandwidth product

M ≤ 2NW − 1, (10)

where W is the one-sided bandwidth in Hz. Multiwindow analysis estimates the power spectrum
by averaging the spectral estimates using each window. The resulting averaged estimate can have a
reduced variance. However, in the speech processing application that is the focus of this work, it is
the low-order correlation terms that need to be estimated. A lower variance in the power spectral
estimate does not necessarily translate to a better correlation estimate.

For the case of NW = 1.75 and N = 240, the first three windows are shown in Fig. 5. The first
window has 99.98 % of the energy within the design bandwidth. The corresponding figures for the
second and third windows are 99.09 % and 88.64 %. If a fourth window had been used, it would
have less than 50 % of its energy within the design bandwidth.

The autocorrelation can be calculated for each of the windows and the final correlation obtained
as the average of these correlations. For this analysis, it is assumed that each of the windows, wm[n]
is normalized to unit energy. The correlation estimate using window m is (c.f. Eq. (1) and Eq. (5)),

rm[k] =
∞∑

n=−∞
wm[n]x[n]wm[n − k]x[n − k]. (11)
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Fig. 5 Discrete prolate spheroidal sequence windows for a time-bandwidth product
of NW = 1.75 and N = 240. The amplitudes have been multiplied by

√
N .

The final correlation estimate is

r̂[k] =
M−1∑
m=0

βmrm[k]. (12)

There are different choices for the weighting factors, βm. Here we will consider only simple averag-
ing, βm = 1/M .

Following the development in [5], the expected value of r̂[k] is given as

E
[
r̂[k]

]
= Q[k]r[k], (13)

where r[k] is the true correlation and Q[k] is the average correlation of the window sequences,

Q[k] =
1
M

M−1∑
m=0

∞∑
n=−∞

wm[n]wm[n − k]. (14)

The formulation in Eq. (13) has the form of a lag window, Q[k], acting on the correlation lags.
Note, however, that the true correlation values appear on the righthand side of this equation. For
lag windowing to be applied, the correlation that it acts on would be an estimated correlation,
calculated after applying a data window to isolate a segment of speech. For the typical frame
lengths used in speech coding, the effect of the data window cannot be neglected. As such, the
effect of the multiple windows acting on the data signal cannot be replaced by a lag window. A
further discussion of the relationship between lag windows and multiwindow analysis can be found
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in [6].
Let the time-bandwidth product be NW = 1.75 and the window be of length N = 240 as

before. The function Q[k] is plotted in Fig. 6 for different values of M . The function Q[k] can be
used to measure the correlation estimation bias. The bias is the difference between the average
estimated correlation value and the true correlation value. Deviations of Q[k] from unity result in
a larger bias. Since the first DPSS window for this time-bandwidth product is close to a Hamming
window, the curve for a Hamming window would fall nearly on top of the curve for M = 1. The
function is always positive. For M = 2 and M = 3, the function predicts a severe bias for large
lags. Since the function goes negative for certain lag values, the average correlation estimate will
be of the wrong sign in those regions. Note however, that for LP analysis we only need lags 0 to
10 and the penalty in bias for the difference configurations for that lag range is small.

−0.2
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0 N/4 N/2 3N/4

M=1

M=2

M=3

Fig. 6 The quantity Q[k] for DPSS windows different values of M (time-bandwidth
product NW = 1.75, N = 240).

The equivalent frequency response of the multiwindow analysis can be obtained from the Fourier
transform of the sum of the correlation values (Q[k]). This is plotted in Fig. 7. For M = 3, the
main lobe is noticeably flatter than for a single window (M = 1). For this time-bandwidth product,
the first sidelobe has an attenuation of only −16.6 dB, leading to a potential for severe leakage. The
sidelobes for the constituent windows add to give poor off-peak rejection. The curves for M = 2
and M = 3 show that there is a tradeoff with the number of windows. Fewer windows give lower
sidelobes, but more windows reduce the variance of the spectral estimates.

Multiwindow analysis was applied to LP analysis. For the purposes of illustration, a sample
frame was created as follows. White Gaussian noise was passed through a twelfth order all-pole filter



Time Windows for Linear Prediction of Speech 10

−80

−60

−40

−20

0

M=3

M=1

A
m

pl
itu

de
 d

B

0 4π/N 2π/40 2π/20

Fig. 7 Normalized frequency response for multiwindow analysis using DPSS windows
(M = 3, time-bandwidth product NW = 1.75). The broken horizontal line is at −16.6
dB.

to create the signal to be analyzed. For a signal sampled at 8 kHz, frames of length N = 240 were
formed. For a given frame, first, a single window DPSS with time-bandwidth product NW = 1.75
was used to estimate the correlations. Multiwindow analysis was also performed (M = 3) using
DPSS’s with the same time-bandwidth product. The LP analysis was tenth order (Np = 10). The
results differ for different noise sequences, but Fig. 8 shows the LP spectral fits to the data for a
typical frame The ragged light line is the power spectrum computed from the data in the frame.
The dotted line is the reference spectrum, i.e. the spectrum of the twelfth order all-pole filter. The
smooth solid line is the LP fit using a single window. LP analysis with a Hamming window gives
very similar results. The dashed line is the LP fit using multiwindow analysis. One can notice
that for this data, the LP spectral fits differ considerably, with the multiwindow analysis giving a
somewhat less peaky spectral fit. This was generally true, though the results change with different
noise sequences. The broadening of the responses is consistent with the fact that the frequency
response of the ensemble of windows gets flatter as more windows are used. This broadening smears
the power spectrum.

4.2 Minimum Bias Windows

The sinusoidal windows introduced in [11] can also be used for multiwindow analysis. These
windows minimize the “local bias” of the power spectral estimate. The local bias is the just the
leading term of an expansion of the spectral bias, corresponding to a minimization of the second
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Fig. 8 LP analysis for a frame of data (N = 240). The power spectrum is shown by
the dotted line. The solid line is the tenth order LP spectral fit using a single DPSS
window (time-bandwidth product NW = 1.75). The dash-dot line is the tenth order
LP spectral fit using multiwindow DPSS analysis (M = 3, time-bandwidth product
NW = 1.75).

central moment of the power spectrum of the window response. For discrete-time windows, the
window which minimizes this second moment is determined from an eigenvalue formulation. In
fact, this formulation gives the orthogonal windows needed for a multiwindow analysis. As shown
by in [11], the minimum bias windows can be closely approximated by the sinusoidal windows. The
mth window in a multiwindow analysis is given by

wm[k] =

√
2

N + 1
sin

(π(k + 1)(m + 1)
N + 1

)
. (15)

Unlike the DPSS’s, the effective bandwidth increases with increasing numbers of windows in a
multiwindow analysis.

5 Windows in Transform Coding

We take a digression into another application of windows. Consider a transform coding system
using block-based linear transforms with overlapping windows. Let the block length be N and let
the transform blocks advance by L samples. An analysis window wa[n] of length N is applied to
the data before the transform. The transform coefficients are then coded. We can model the effect
of coding as adding some noise to the transformed signal. An inverse transform is then applied.
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The output of the inverse transform is then windowed again with a synthesis window ws[n] to give
an overlap-add reconstruction.

The analysis window can be optimized for a particular application. For instance, if the transform
is a DFT, the windows of the type considered heretofore are suitable. However if coding of the
coefficients takes place, then a synthesis window which merges adjacent outputs can reduce block-
edge effects.

At a given time point n, the input signal may appear as input to several transforms since the
blocks overlap. The signal component at the output after analysis and synthesis is

x̂[n] =
∞∑

k=−∞
x[n]wa[n − kL]ws[n − kL]

= x[n]
∞∑

k=−∞
wa[n − kL]ws[n − kL].

(16)

5.1 Perfect Reconstruction

An additional requirement is often imposed: In the absence of modification of the transform co-
efficients, the output should be equal to the input. The requirement for perfect reconstruction
is ∞∑

k=−∞
wa(n − kL)ws(n − kL) = 1. (17)

Denote the product of the analysis and synthesis windows as w[n],

w[n] = wa[n]wx[n]. (18)

The perfect reconstruction property can be written as a convolution,

∞∑
k=−∞

δ[n − kL] ∗ w[n] = 1. (19)

In the frequency domain, this convolution is equivalent to

∞∑
l=−∞

δ(ω − 2πl

L
)W (ω) = δ(ω), (20)

or equivalently

W
(2πl

L

)
=

⎧⎨
⎩

1, l = pL,

0, otherwise.
(21)
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This is a requirement on the zeros crossings of the frequency response of the combined window.4

The minimum length window satisfying the perfect reconstruction property is a rectangular
window of length L, wR[n]. From Eq. (21), one can see that if its frequency response is multiplied
by another frequency response, P (ω), the combined response, W (ω) = P (ω)WR(ω) also has the
perfect reconstruction property. This multiplication corresponds to a convolution in the time
domain. This means we can convolve the rectangular window of length L with any other time
function and still end up with a window satisfying the perfect reconstruction property,

w[n] = p[n] ∗ wR[n]. (22)

If the sequence p[n] is symmetric, the window w[n] will be symmetric. As an example of this type of
construction, in Appendix A.2 the modified Hann window (for N even) is shown to be expressible
as the convolution of a rectangular window and another time function (a sine lobe).

5.2 Optimizing the Signal-to-Noise Ratio

Let us model the coding process in the transform domain as generating noise. The noise component
is different for each transform, so the noise output at time n is

ζ̂[n] =
∞∑

k=−∞
ζk[n − kL]ws[n − kL], (23)

where ζk[n] is the noise in the nth sample after the kth transform. It is not unreasonable to assume
the noise components from different transforms are uncorrelated. We will also assume that the
noise terms have the same variance and the variance does not depend on n. The noise power at
the output at time n is then

No[n] = E
[
ζ̂2[n]

]

=
∞∑

k=−∞

∞∑
l=−∞

E
[
ζk[n − kL] ζl[n − lL]

]
ws[n − kL]ws[n − lL]

= σ2
ζ

∞∑
k=−∞

w2
s [n − kL].

(24)

4The perfect reconstruction property is analogous to the Nyquist condition for no-intersymbol interference of
pulses in data transmission.
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The signal power is (assuming a zero mean signal)

So[n] = E
[
x̂2[n]

]

= E
[
x2[n]

] ∣∣∣
∞∑

k=−∞
wa[n − kL]ws[n − kL]

∣∣∣2

= σ2
x[n]

∣∣∣
∞∑

k=−∞
wa[n − kL]ws[n − kL]

∣∣∣2.
(25)

The signal-to-noise ratio(SNR) at time n is

So[n]
No[n]

=
σ2

x[n]
σ2

ζ

∣∣∣
∞∑

k=−∞
wa[n − kL]ws[n − kL]

∣∣∣2
∞∑

k=−∞
w2

s [n − kL]

. (26)

For a given choice of wa[n], the SNR is maximized (Schwartz’s inequality) by choosing ws[n] =
wa[n].5 This is just a matched-filter result. SNR maximization requires that the analysis and
synthesis windows have the same shape.

In perfect reconstruction systems, the product of the two windows is often chosen to be a
modified Hann window. If the analysis and synthesis windows are made equal, they become sine
windows. These are the minimum bias windows discussed earlier.

An optimization of the windows for controlling the sidelobes in a transform coder, while main-
taining perfect reconstruction, was carried out in [14].

6 Asymmetrical Windows

In speech processing, one can distinguish between the LP parameter extraction process and the
actual processing of a frame of speech samples. Most often the analysis window used for parameter
estimation is larger than the frame of speech to be processed. For symmetric windows, the centre of
the analysis window is typically centred on the frame of speech, reaching both into samples before
and after the speech frame. This of course means that an additional delay must be imposed for the
look-ahead samples. An early paper considered the use of such asymmetrical windows [12]. Some
low delay coders, for example the ITU-T G.729 coder [7], use an asymmetric analysis window. The
peak of the window occurs such that the window emphasizes the more recent samples. In this way,

5The version of Schwartz’s inequality applicable here is |∑k w1[k] w2[k]|2 ≤ ∑
k |w1[k]|2 ∑

k |w2[k]|2, with equality
if and only if w1[k] = aw2[k].
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the amount of look-ahead can be reduced while keeping the peak of the window centred on the
speech frame.

We will consider the window of the form used in the ITU-T G.729 speech coder,

w[n] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1+α

2
− 1−α

2
cos(

2πn

2NL − 1
), 0 ≤ n ≤ NL − 1,

cos(
2π(n − NL)

4NR − 1
), NL ≤ n ≤ NL + NR − 1,

0, elsewhere.

(27)

For the G.729 window, α = 0.08, NL = 200, and NR = 40. This asymmetrical window consists
of the first half of a traditional Hamming window (α = 0.08, length 400) taking up 200 samples,
followed by a cosine taper of length 40. The window is plotted in Fig. 9.
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0 N/4 N/2 3N/4

Fig. 9 Asymmetrical G.729 window (N = 240).

The frequency response of this window is plotted in Fig. 10. The response does not show a
clearly defined main lobe — there are no zero crossings in the vicinity of the main lobe. The
attenuation at ω = 4π/N is only 18.1 dB. For comparison, the plot also shows the frequency
response of a Hamming window of the same length. It can be seen that compared to traditional
symmetric windows, this asymmetric window has a very poor frequency response.

It is interesting to note that the SMV coder standardized by 3GPP2 [8] cycles through three
windows, each of length 240. The first is a Hamming window; the second marries the first half of
a 300 sample Hamming window with the second half of a 180 sample Hamming window; and the
third is very close to the asymmetrical window shown above. One can see the frequency response
for two of these windows in Fig. 10. While the main lobes match to some degree, the amount of
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Fig. 10 Frequency response (solid line) of the asymmetrical G.729 window (N = 240).
The broken line is the frequency response of a modified Hamming window.

leakage would vary significantly when switching windows. One can speculate that even in steady
sounds, the LP parameters will have spurious changes brought about by the window switching.
Whether these changes affect the overall performance is an open question.

6.1 Modified Asymmetrical Window

As an attempt to improve the response of the G.729 asymmetric window, the definition of the
asymmetrical window was modified in the same way as the conventional Hann and Hamming
windows were modified. First, let us look at the problems with the conventional definition of the
G.729 window.

Consider the discrete variable n to be integer-spaced samples of a continuous variable t. If we
look at the underlying continuous functions, we see a Hamming window starting at t = 0. The
centre of the continuous Hamming window is at t = NL − 1/2. The cosine rolloff begins at t = NL

and goes to zero at t = NL + NR − 1/4. We note the following.

1. There is a half-sample “gap” between the end of the Hamming window and the start of the
cosine rolloff.

2. The period of the cosine element of the Hamming window part (2NL − 1) is mismatched to
the length of the pedestal (NL).

3. The period of the cosine rolloff is 4NR − 1, which is incommensurate with the period of the
Hamming window part for the values used in the G.729 window.
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4. The Hamming window part has a pedestal, while the cosine rolloff part does not.

A modified version of the asymmetrical window can be defined.

w[n] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1+α

2
− 1−α

2
cos(

π(2n + 1)
2NL

), 0 ≤ n ≤ NL − 1,

β + (1 − β) cos(
π(2(n − NL) + 1)

4NR
), NL ≤ n ≤ NL + NR − 1,

0, elsewhere.

(28)

This modified window has a half-Hamming window, which in continuous time starts at t = −1/2
and ends at t = NL −1/2. The cosine rolloff starts at t = NL −1/2 and ends at t = NL +NR−1/2.
The cosine rolloff is on a pedestal of height β.

Unfortunately, these modifications do not significantly improve the frequency response.

6.2 Optimization of the Asymmetrical Window

We attempted an iterative improvement scheme. Starting from the definition of the asymmetrical
window, the coefficients were modified to improve the fraction of the energy in the frequency
domain within |ω| <= 4π/N . The peak of the window was constrained to be at NL, with a
monotonic lefthand side and a monotonic righthand side. The optimization scheme took a step
in one coefficient at a time within the monotonicity constraint. The order of adjustment was
randomized. With optimization, the fraction of out-of-band energy reduced from 2.1% to 0.71%.
The result is is a window with a flattened top (see Fig. 11). The optimized window has its centre
of mass more concentrated in the middle of the window than was the case for the original G.729
window. This shift of the centre of mass works against the goal of the emphasizing samples nearer
to the end of the frame. In addition, the optimized window has disconcerting discontinuities.

Recently, Chu [13] has optimized windows to maximize the average prediction error energy after
LP analysis. The resulting windows take on an asymmetric form, but with a much narrower “main
lobe” than the conventional asymmetric windows in, for instance, G.729.

7 Comparison of Window Properties

Table 1 shows the properties of the various windows considered above. The values given are those
for a window length of N = 240. Values which scale with the window length are given in term of
N . The table shows two DPSS windows. The first was designed to match the central portion of a
Hamming window. The second was designed to have a spectral null at |ω| = 4π/N , giving a main
lobe width equal to that for a Hann or Hamming window. The properties given in the table are as
follows.
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Fig. 11 Asymmetrical window (N = 240), optimized to concentrate energy in |ω| <
4π/N (solid line). The dashed line is the G.729 asymmetrical window.

1. The 6 dB bandwidth is the double-sided bandwidth measured at the half-amplitude point.
For the modified Hann window, the half-amplitude point occurs exactly at 2π/N , giving a 6
dB bandwidth of 4π/N . The values in the table are normalized to the sampling rate. To get
the value on the ω scale, multiply by 2π. To get the value in Hz, multiply by the sampling
frequency in Hz. For 8 kHz sampling and N = 240, the 6 dB bandwidth of 2/N corresponds
to 67 Hz.

2. The main lobe width (double-sided) is the distance between zero crossings surrounding the
main lobe of the frequency response of the window. This is measured as a fraction of the
sampling rate. This main lobe width measure does not apply to the asymmetric window
which does not exhibit zeros in the frequency response. For 8 kHz sampling and N = 240, a
main lobe width of 4/N corresponds to 133 Hz.

3. The table gives the minimum attenuation for |ω| > 4π/N . For the asymmetrical window,
since there is no null near 4π/N , the minimum attenuation occurs at 4π/N . For the other
windows, the minimum attenuation occurs for one of the sidelobes beyond 4π/N .

4. The table column labelled “sidelobe energy” gives the fraction of energy for |ω| > 4π/N .

5. The window energy is the sum of the squared values of the window (time-domain). All of the
windows have been normalized such that the interpolated window value at the middle of the
window is unity. The window energy can be used to normalize the window so that it results
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in an unbiased estimator for white noise inputs.

6. The pedestal height for each window is given in the table. For most of the windows, this
was determined from the definition of the window. For the DPSS windows, there is no
analytic expression for the window. For these windows, the pedestal height was estimated
by extrapolating the window function out half a sample at either end. For the asymmetric
window, the pedestal heights for the left portion of the window and for the right portion of
the window are given separately.

Table 1 Properties of time windows (N = 240). The sidelobe attenuation corre-
sponds to the largest sidelobe for |ω| > 4π/N . The sidelobe energy is the fraction
of the energy for |ω| > 4π/N . Frequency values in the table are normalized by the
sampling rate.

Window 6 dB
Bandwidth

Main Lobe
Width

Sidelobe
Attenuation

Sidelobe
Energy

Window
Energy Pedestal

Rectangular 1.21/N 2/N 17.8 dB 5.0 % N 100 %
Hann 2.01/N 4.01/N 31.5 dB 0.051 % 0.373N 0 %

Mod. Hann 2/N 4/N 31.5 dB 0.051 % 0.375N 0 %
Hamming 1.82/N 4.03/N 42.7 dB 0.036 % 0.396N 8 %

Mod. Hamming 1.82/N 4/N 42.7 dB 0.037 % 0.397N 8 %
DPSS (NW = 1.75) 1.84/N 3.89/N 38.8 dB 0.017 % 0.394N 0.33 %
DPSS (NW = 1.84) 1.87/N 4.01/N 40.5 dB 0.012 % 0.386N 0.26 %
Asymmetric G.729 1.70/N – 18.1 dB 2.1 % 0.415N 8, 0.99 %

7.1 Effect of the Window Pedestal

The usual argument for a tapered window is that as it slides across the signal, new samples are
brought into play gradually. The Hamming window is a sinusoidal window sitting on a pedestal of
relative height 0.08. The pedestal can cause substantial changes in the estimated LP parameters
even when the window move ahead by a single sample. For comparison, we will use a Hann window,
i.e. a window without a pedestal.

For this experiment, the window is advanced in time one sample at a time. Figure 12 shows the
effect on a segment of male speech. The plot shows the line spectral frequencies (LSF’S) derived
from a tenth order LP analysis [9]. The top plot shows the speech segment (the word “the” from
the sentence “Kick the ball straight and follow through”). The second plot shows the energy under
a Hann window as the window is advanced one sample at a time. The next plot shows the evolution
of the line spectral frequencies using a Hann window (advanced one sample at a time). The bottom
plot shows the LSF’s when a Hamming window is used. The inset on the top waveform plot shows
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a Hamming window centred on 440 ms. This position corresponds to the roughness of the LSF
tracks near 440 ms. If one superimposed the LSF tracks for the two types of windows, one observes
that the “glitches” (Hamming window) in each cluster tend to occur on just one side of the smooth
curve (Hann window);

In practice, the windows are advanced less often than every sample. The effect is to sub-sample
the LSF tracks. It can be seen that if the sample point lies on one of the “outliers”, the results for
the two types of windows will be substantially different. Furthermore, the less smooth trajectories
of the Hamming windowed speech parameters will be less amenable to differential coding. The
effects demonstrated by this example are by no means rare — the spurious variations occur in
many speech segments.

This experiment was also run with the other time windows considered earlier. For the asymmet-
ric G.729 window, the spurious variations were as large or larger than for the Hamming window.
For the DPSS window, the spurious variations were present but attenuated. This is consistent with
the fact that the pedestal for the DPSS window is smaller than for the Hamming window or for
the asymmetric window.

Al-Naimi et al [10] recognized the problems with the LSF tracks. They propose generating LP
parameters at a high rate and then use an anti-aliasing filter to smooth out the variations before
resampling at the frame desired rate. They show improved performance for a vector quantizer
(using a moving average predictor) which is trained and operated with the smoothed LSF’s. An
alternative might be to use pitch-synchronous analysis with the aim of ensuring that the window
location is more favourable aligned to large amplitude pitch pulses.

The results shown here indicate that the filtering proposed in [10] may be largely unnecessary.
The simple expedient of using a window with no pedestal removes the spurious variations in the
LSF tracks.

8 Summary

This report has examined the properties of windows used for the linear predictive analysis of speech.
The suitability of a window for this purpose is a compromise between time-domain properties
(length, shape, symmetry, and presence of discontinuities) and frequency-domain properties (main
lobe width and shape, and sidelobe suppression). In the following, we give some suggestions.
Instead of the conventional Hann and Hamming windows, use the modified versions for slightly
improved properties. The DPSS window (bandwidth 3.5/N) seems to be slightly preferable to a
Hamming window. The main lobe is more compact and there is a better drop-off for the far out
sidelobes, at the expense of a slightly poorer attenuation of the first sidelobe. The pedestal height
is also smaller. Use the asymmetrical G.729 window only if the reduced look-ahead is of prime
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Fig. 12 Effect of the window pedestal on LP parameters. The top plot shows the
speech segment being analyzed. The inset shows a Hamming window centred on 440
ms. The second plot shows the energy under a Hann window. The next plot shows the
evolution of the LSF parameters when a Hann window is used (window advanced one
sample at a time). The bottom plot shows the evolution of the LSF parameters when
a Hamming window is used (window advanced one sample at a time).
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importance. The frequency resolution and sidelobe suppression for the asymmetrical window is
very poor. For most speech applications, avoid windows with significant pedestals. This points
to the use of the Hann window or as a compromise the DPSS window, which has a much smaller
pedestal than the Hamming window. Other choices of the bandwidth for the DPSS window may
be useful for speech processing. Generally, larger bandwidths will tradeoff a larger main lobe width
against better sidelobe suppression and smaller pedestal height.
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Appendix A - Raised-Cosine Windows

Consider a raised-cosine window defined in continuous time,

w(t) =

⎧⎨
⎩

1+α

2
+

1−α

2
cos(

2πt

W
), |t| ≤ W

2 ,

0, elsewhere.
(29)

This window is of length W and centred at the origin. Altering α allows the characteristics to
change from a rectangular window (α = 1), to a Hamming window (α = 0.08), to the Hann window
(α = 0).

A discrete-time window can be created by sampling the continuous-time window. The N sam-
ples will be taken starting at t = t0 and ending at t = t1, where the end points are assumed to lie
in the interval [−W/2,W/2]. The window is then

w[n] =

⎧⎪⎨
⎪⎩

1+α

2
+

1−α

2
cos(

2π
W

nt1 + (N−1−n)t0
N − 1

), 0 ≤ n ≤ N − 1,

0, elsewhere.
(30)

The discrete-time Fourier transform of the raised-cosine window is

W (ω) = e−jω N−1
2

(1+α

2
Dsinc(ω,N) + ej2π t1+t0

2
1−α

4
[
Dsinc(ω−ωo, N) + Dsinc(ω+ωo, N)

])
, (31)

where the function Dsinc is defined as

Dsinc(ω,N) =
sin(ωN/2)
sin(ω/2)

(32)

and ωo is 2π(t1− t0)/(W (N −1)). This frequency response of the window is the sum of three Dsinc
functions. The function Dsinc(ω,N) is periodic in ω (period 2π), takes on the value N at ω = 0
and has zeros at ω = 2πk/N for k = 1, . . . , N − 1. The other Dsinc functions in the frequency
response have the same zero crossing spacing, but are displaced in frequency. The zero crossings
of the three Dsinc terms will coincide only if ωo is an integer multiple of 2π/N . Note also that the
window is symmetric and the frequency response is linear phase if t0 = −t1.
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A.1 Standard Raised-Cosine Windows

A standard formulation for a discrete-time raised-cosine window is obtained by choosing t1 = W/2
and t0 = −t1, giving ωo = 2π/(N − 1),

w[n] =

⎧⎨
⎩

1+α

2
− 1−α

2
cos(

2πn

N − 1
), 0 ≤ n ≤ N − 1,

0, elsewhere.
(33)

For α = 0, this is the window returned by, for instance, the hann(N) function call in Matlab.
The end points of the discrete-time window are zero. The hann(N-1,’periodic’) function call in
Matlab returns the same window without the last zero-valued sample. The hanning(N-2) function
call in Matlab returns the same window without either of the two zero-valued end-points.

For the standard Hann window, the zero-crossings of the 3 terms in the frequency response do
not coincide. The overall frequency response has a first zero crossing which occurs between 2π/N

and 2π/(N − 1). The exact value must be found numerically for a given N .
The conventional Hamming window is given by Eq. (33) with α = 0.08. This is the window

returned by the hamming(N) function call in Matlab. The Hamming window is a Hann window
of height 0.92 sitting on a pedestal of height 0.08. The frequency response of the conventional
Hamming window has the problems of mismatched zero crossing terms noted above.

A.2 Modified Raised-Cosine Windows

A modified raised-cosine window can be defined with t1 = W/2 − W/(2N) and t0 = −t1, giving
ωo = 2π/N . The modified discrete-time raised-cosine windows can be written as

w[n] =

⎧⎨
⎩

1+α

2
− 1−α

2
cos

(π(2n + 1)
N

)
)
, 0 ≤ n ≤ N − 1,

0, elsewhere.
(34)

The modified Hann window can be calculated in Matlab as h=hann(2*N+1); h=h(2:2:end). The
modified Hamming window is returned with h=hamming(2*N+1); h=h(2:2:end).

The frequency response of the modified raised-cosine window is

W (ω) = e−jω N−1
2

(1+α

2
Dsinc(ω,N) +

1−α

4
[
Dsinc(ω−2π

N
,N) + Dsinc(ω+

2π
N

,N)
])

, (35)

For the modified windows, the zero crossings of all the Dsinc terms match. In fact, a Discrete
Fourier Transform (DFT) of length N will have only three nonzero coefficients.
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A.2.1 Frequency response of the modified Hann window

The frequency response (without the linear phase term) of the modified Hann window (α = 0) is
plotted in Fig. 13. The broken lines show the three terms that contribute to the sum (shown with a
solid line). Notice that the term for the Dsinc function centred at zero (dashed line) and the terms
for the other Dsinc functions (dash-dot lines) are out of phase and tend to cancel in the tails. This
results in diminished sidelobes relative to a rectangular window (central Dsinc function alone).

0

N/4

N/2

−8π/N −4π/N 0 4π/N 8π/N

Fig. 13 Frequency response of a modified Hann window (N = 240). The solid line is
for the overall window. The broken lines show the three additive components.

The frequency response of the modified Hann window can also be written in a product form
(for N even),

W (ω) = e−jω N−1
2 Dsinc(ω,N/2)

×
cos(

ωN

4
)

cos(ω) − cos(
2π
N

)

[1+α

2
(cos(ω) − cos(

2π
N

)) + (1−α) sin2(
ω

2
) cos(

π

N
)
]
,

(36)

The frequency response (without the linear phase term) of the modified Hann window is shown in
Fig. 14. The two terms in the product are shown as broken lines, with the product being shown
with a solid line. The first factor (dashed line) is the frequency response of a half-length rectangular
window. This response has zero-crossings every 4π/N . The second factor (dash-dot line) not only
inserts extra zero crossings, but since it decreases in amplitude away from the main lobe, it reduces
the sizes of the sidelobes in the overall frequency response.
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Fig. 14 Frequency response of a modified Hann window (N = 240). The solid line is
for the overall window. The broken lines show the two product factors. The right-hand
scale applies to the second product factor (dash-dot line).

The modified Hann window is the convolution of the time responses corresponding to the two
factors in the frequency response. The time responses of these factors are shown in Fig. 15. The
first factor (dashed line) is a half-length rectangular window (assuming N is even). The second
factor (dash-dot line) is a sine-like lobe.

A.2.2 Frequency response of the modified Hamming window

The Hamming window is formed by adding a pedestal to a Hann window. This results in better
cancellation of the first few sidelobes. Comparing Fig. 16 with the corresponding figure for a Hann
window (Fig. 13), it an be seen that increasing the relative amplitude of the central term (dash-dot
line) reduces the first sidelobe of the frequency response. However further out in frequency, the
cancellation will not be as good as for the Hann window.

A.2.3 Comparison of modified and standard windows

At moderately large values of N , say around 240, the envelope of the frequency response of the
standard and modified Hamming windows are largely indistinguishable. The details, of course,
differ since the positions of the zero crossings differ.

For the Hann window, the situation is different. For the modified Hann window, the zeros have
spacing 2π/N , up to and including ω = π. For the standard Hann window, the zeros have a slightly
larger spacing, so that the last zero before π is closer to π than is the case for the modified Hann
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Fig. 15 Modified Hann window (N = 240) as the convolution of two terms. The first
term is a rectangular window of length N/2 (dashed line). The second term is a sine
lobe (dash-dot line, using the right-hand scale).
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Fig. 16 Frequency response of a modified Hamming window (N = 240). The solid
line is for the overall window. The broken lines show the three additive components.
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window. This close spacing of the zeros near π results in additional attenuation near ω = π. The
difference between the windows is illustrated in Fig. 17.
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Fig. 17 Normalized frequency response of the modified Hann window (top) and stan-
dard Hann window (bottom), N = 240.
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