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ITU-T G.723.1 Speech Coder: 
A Matlab Implementation 

This report documents the details of the processing steps in the ITU-T G.723.1 

Speech Coder. This report accompanies an implantation of that coder in Matlab. The Mat-

lab implementation was designed to facilitate experimentation and research using a prac-

tical speech coder as a base. 

1 Introduction 

This document describes the ITU-T G.723.1 speech coder [1] and a Matlab implementation 

of that coder. The implementation is based on the ITU-T floating-point reference code. G.723.1 is 

a CELP (Code-Excited Linear Prediction Coder). The Matlab implementation supports the mul-

tipulse coding mode (operating at 6.3 kb/s). This document gives an overview of the coder and 

decoder, and fills in details of the processing steps. 

The implementation gives results that are close but not identical to those from the reference 

code. Careful checking of several input files has shown that the differences are in isolated frames. 

The first subframe in the first frame is problematic, because that subframe is all zeros. The 

placement of pulses in that subframe influences future subframes (since the pulse amplitudes are 

always non-zero). Fortunately, differences in the first frame tend to stay isolated to that frame. 

Occasionally, the quantized predictor coefficients will differ from those generated by the refer-

ence code. The effect of that difference tends to propagate for several frames. In all cases, the 

output coded speech is indistinguishable from that produced by the reference code. 

Given a bitstream file, the decoder implemented in Matlab generates the same speech file as 

the reference code. 

Unimplemented Features 

At the moment, the coder works only at 6.3 kb/s. It does not implement the voice activity 

detector (VAD) feature. The decoder also works only at 6.3 kb/s and does not handle lost frames 

or inactive frames. In addition, the postfiltering operations have not been implemented in the de-

coder. 



An Implementation of ITU-T G.723.1  2 

2 Generalities 

2.1 Input / Output 

The input to the Matlab version of the coder is a speech file (8 kHz sampling rate) in one of 

several file formats (WAVE, raw, AU, Sphere). The output of the coder is either a bitstream file 

(compatible with the reference code) or a Matlab data file. The former contains codes and corre-

sponds to the compressed bitstream from the coder. The latter stores values, rather then codes, 

and can be used to pass, for instance, unquantized values to the decoder. 

The decoder takes as input either a bitstream file (from the Matlab implementation of the 

coder or the reference code implementation of the coder) or a data file (from the Matlab imple-

mentation of the coder). Its output is a WAVE file. 

2.2 Filters 

Many of the filters are implemented using a custom Matlab routine, PZFilter. This rou-

tine is an interface to the Matlab routine filter, which uses a direct form II structure. If a filter 

starts in zero-state and has constant coefficients, then the Matlab routine filter can be used 

directly. This is the case for the highpass filter used as a preprocessing step in the coder. However, 

for other filtering operations in which the coefficients change from frame-to-frame, the structure 

of the filter affects the results. The routine PZFilter does the extra operations (using the Mat-

lab routine filtic) necessary to use the past input data and past output data as state values, 

thereby duplicating the results of the filtering as done in the reference code. 

2.3 Data Values and Tabulated Value 

This implementation uses the Matlab convention of audio data normalized to a full-scale 

value of unity. This means that internal data values will be 1/32768 of the values in the reference 

code. This scaling is kept throughout the program. 

There are a number of tables in the reference code. The Matlab code can read these tables, 

but can also generate the data for many of the tables on the fly. For instance, the analysis window 

for LP analysis can either be read from a table (taken from the reference code and stored with 6 

digits of accuracy) or generated at startup with full precision. Quantizer tables are read in from 

files. 
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3 Frame Level Processing 

The coder and decoder operate on two time scales: a frame of 240 samples that is divided 

into subframes of length 60. The frame level operations involve the following steps. 

• Highpass filter the input signal. 

• Form an extended (highpass filtered) signal consisting of three parts: look-back samples, 

current frame samples, and look-ahead samples. The current frame samples are divided 

into 4 subframes. 

• Linear prediction analysis is done on each subframe. This creates four sets of LP coeffi-

cients, one for each subframe. 

• The LP coefficients for the last subframe (subframe number 3) are quantized (in the LSF 

domain, as described below). 

• The quantized LP coefficients are linearly interpolated (in the LSF domain) using the 

quantized LP coefficients from the previous frame. This creates four sets of quantized LP 

coefficients, one for each subframe, the last of these being the quantized LP coefficients 

for subframe 3. These quantized coefficients will be used for the synthesis filter. 

• The unquantized LP coefficients (4 sets) are used to form a formant perceptual weighting 

filter. This filter is used to weight the error signal during the search for the best excitation 

parameters, in effect directing the search procedure to take into account psycho-acoustic 

properties. 

• The input signal (after highpass filtering) is processed with the formant perceptual 

weighting filter. The output of this filter is used to form an initial estimate of the pitch 

lag. This is termed the open-loop pitch estimate. This estimate is based on two subframes 

at a time, giving two open-loop pitch estimates per frame: one for subframes 0 and 1, and 

another for subframes 2 and 3. 

• The open-loop pitch estimate is used to generate a second weighting filter, the harmonic 

noise weighting filter, which tends to emphasize the harmonic peaks during voiced 

speech. 

• The input signal, processed by the combination of highpass filter, formant weighting fil-

ter and harmonic noise weighting filter forms the so-called target signal. 
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3.1 LP Analysis 

The linear prediction (LP) analysis operates on the highpass filtered signal. LP analysis is 

carried out for each subframe. A 180 sample Hamming window is applied for each subframe. The 

window is centred on a subframe and so extends on either side of the subframe (60 samples back, 

60 samples over the subframe, and 60 samples ahead). The look-back for the frame is 60 samples 

to accommodate the backwards extent of the window when processing the first subframe. The 

look-ahead for the frame is 60 samples to accommodate the forward extent of the window when 

processing the last subframe. The positions of the windows for the subframes are shown in Fig. 1 

Let the highpass filtered data for a subframe be [ ]x n . This is the data lying under the analy-

sis window for that subframe. The windowed data is 

 [ ] [ ] [ ] 0 1.w wx n x n w n n N= ≤ ≤ −  (1) 

The prediction error is 

 
1

[ ] [ ] [ ].
pN

w k w
k

e n x n c x n k
=

= − −∑  (2) 

For this equation, we can let n  take on all values if we define [ ]wx n  to be zero for 0n <  and 

wn N≥ . Then writing the error in vector-matrix form, 
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where ( )k
wx  is a shifted version of the windowed data vector, 
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Fig. 1  LP windows. 
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The vector are shown as infinite in extent, but have only wN  non-zero elements. LP analysis 

chooses a set of predictor coefficients to minimize the squared-error, 
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where the correlation values are functions of the time differences, 
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In the LP analysis for G.723.1, the correlation values are lag windowed (see [2]), 

 ( ) ( ) ( ).lr k r k w k′ =  (7) 

The lag window is often chosen to have a Gaussian shape. Multiplying the correlation values by 

the Gaussian window is equivalent to convolving the power spectrum of the windowed signal by 

another Gaussian shape. The values of the lag window used in G.723.1 correspond approximately 

to a Gaussian frequency response with a one-sided bandwidth of 43 Hz. 

The LP analysis also uses white noise compensation, 

 [ ] [ ](1 [ ]),r k r k kµδ′′ ′= +  (8) 

where 1/1024µ = . The use of this white noise is equivalent to using a modified error criterion 

 [0] 2 .T T Trε µ′ = − + +c r c Rc c c  (9) 
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In this form, we can see that the error criterion has been augmented with a Lagrange multiplier 

that controls the sum of the squares of the coefficient vector. 

The LP equations can be efficiently solved using the Durbin-Levinson recursion to give the 

optimal predictor coefficients, 

 .opt =Rc r  (10) 

Differences from the Reference Code 

• The linear prediction analysis uses the built-in Matlab routine levinson. This may 

cause some small differences in the resulting values compared to the reference code. 

• The reference code (function Comp_Lpc) scales the autocorrelation values by 21/ fN , 

where fN  is the frame length (240). This is not done in the Matlab code since the LP 

analysis is insensitive to scaling. 

• The correlation is lag windowed. In the reference code, the lag window is defined in a ta-

ble. The documentation indicates that the lag window is based on binomial coefficients. 

The Matlab code can read the table of lag window values or calculate a Gaussian lag win-

dow, 

 2
BW

1[ ] exp( (2  ) ).
2

w k f kπ= −  (11) 

The reference code defines the lag window to 6 digits (values near unity). The value of 

BWf  which best matches the tabulated values is 42.4869/8000 (42.5 Hz for a 8000 Hz 

sampling rate). The maximum error in window values is 75 10−× . An attempt was to find 

a true binomial window that matches the tabulated data. The closest binomial window is 

a binomial window of length 4001N = . Normalizing the window with respect to the 

middle coefficient and selecting the 11 coefficients starting with the middle coefficient 

gave an error of more than 0.001 with respect to the tabulated values. 

• The reference code checks for zero energy, and if found, short-circuits the calculation of 

the remaining correlation coefficients by setting them to zero. The Matlab implementa-

tion does not do this check. 
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• The reference code for the Levinson-Durbin recursion (function Durbin) checks for 

numerical problems by checking for decreasing absolute error with order.1 If an increase 

in error is found, the order recursion is aborted. The predictor coefficients have been ini-

tialized to zero, so in effect, any higher order predictor coefficients are set to zero. In ad-

dition, the second reflection coefficient is set to 0.99. This value is used outside the rou-

tine as a sine detector (used by the pitch prediction routine). 

3.2 Sine Detector 

After the Levinson recursion, a sine detector based on the second reflection coefficient is 

applied. The theory behind this scheme is described in Appendix A. The presence of a sine is sig-

nalled by a second reflection coefficient larger than 0.95. The sine detector pushes a one or a zero 

onto a 15-bit word. If 14 or more bits are set, a flag (the 16th bit) is set. In the Matlab code, an 

array is used to store the binary values. The sine detector is used in the adaptive codebook search 

and in the Voice Activity detector feature. 

3.3 LSF Quantization 

The quantization of the LP parameters is done in the line spectral frequency (LSF) domain. 

One set of LP parameters per frame is quantized. Before quantization, the LP parameters have an 

additional bandwidth expansion applied 

 [ ] [ ],kc k c kγ′ =  (12) 

where 0.994γ = , corresponding to a one-sided bandwidth expansion of 25 Hz. 

The LP coefficients are converted to LSF parameters. Let the LSF parameters be denoted by 

iω , 1 pi N≤ ≤ . The LSF parameters are an ordered set of values between 0 and π . A vector of 

fixed average values is subtracted from the LSFs to give a set of mean-removed LSFs, 

 .= −ω ω ω�  (13) 

The quantized LSFs from the previous frame are used to predict the LSFs for the current frame. 

The prediction error is 

                                                      

1 This check ignores small negative errors, which also signal numerical problems. 
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where 12 / 32b = . This formulation will give a zero error when the current and the previous quan-

tized LSFs are equal to the mean values. The prediction error vector is then quantized. 

The quantizer finds the best codebook entries in the sense of a weighted squared-error. The 

weighting function is a diagonal matrix with entries equal to inverse of the distance of a particular 

LSF to its closest neighbour. The entries of the diagonal of the weighting matrix are 
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The weighted error is 

 ˆ ˆ( ) ( ).Tε = − −ω ω W ω ω� � � �  (16) 

The quantizer is a 3-split quantizer with dimensions 3-3-4. The error computation is spit by 

dimension with separate quantization of each subvector. The reconstructed LSF vector is given by 
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Since the subvectors are quantized independently, the final vector may have closely spaced or 

improperly ordered LSFs. Measures are taken to correct these cases. The minimum separation of 

two LSFs is to be minω∆ . If any differences are less than this value, the offending LSFs are each 

moved to min / 2ω±∆ of their average value. This process may have to be repeated several times. 

After quantization and imposing a minimum separation, the LSF values for each frame are 

linearly interpolated to give LSF values for each subframe, 

 1ˆ ˆ ˆ(1 ) , , 0 1.k k C k P k s
s

k k N
N

α α α += + − = ≤ ≤ −ω ω ω  (18) 

Difference with the Reference Code 

• The conversion to LSFs is done using the Matlab routine poly2lsf. This difference 

occasionally gives rise to different quantized values. 
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• If the reference code fails to find all of the LSFs (due to numerical problems), it reverts 

to the previous set of quantized LSFs. 

• The LSF values in the reference code take on values from 0 to 256, corresponding to the 

radian frequencies 0 to π . The values in the Matlab implementation are in radians. 

• The LSF means (tabulated) have been converted to radian values. 

• The LSF quantizer tables have been converted to radian values as have the parameters 

controlling the minimum separation of LSFs. 

• The conversion of the interpolated, quantized LSF values back to LP parameters is done 

using the Matlab routine lsf2poly. This was found to give small differences with re-

spect to the reference code. The reference code first transforms the LSFs to the 

cos( )x ω=  domain using linear interpolation into a table of cosine values. To compensate 

for the approximations in this transformation, the Matlab code does the same transforma-

tion and then brings back the values (accurately) to the LSF domain, before converting 

the LSF values with lsf2poly. 

3.4 Formant Weighting Filter 

As part of the process of forming a target signal, the highpass filtered speech is passed 

through a formant perceptual weighting filter. This a pole-zero filter with coefficients changing 

every subframe. The coefficients are taken from the unquantized LP parameters after bandwidth 

expansion. The filter is implemented using the Matlab routine PZFilter in order to mimic the 

operation of the reference code. 

Let the unquantized LP parameters for a particular subframe be represented in terms of the 

all-pole LP synthesis filter1/ ( )A z . The formant weighting filter is 

 1
1 2

2

( )( ) , 0.9, 0.5.
( )F

A zW z
A z

γ γ γ
γ

= = =  (19) 

The effect of this weighting filter is to deemphasize those regions of the spectrum in which 

the LP spectrum has peaks and to emphasize those regions in between peaks. The idea is that the 

peaks of the LP spectrum will tend to mask the noise at those frequencies, while the noise in the 

valleys is more audible. An example of the weighting filter response is shown in Fig. 1. 
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3.5 Open-Loop Pitch Estimation 

The open loop pitch estimate finds the pitch lag and pitch gain values that minimize the 

mean-square estimation error. The open-loop pitch is determined from the output of the perceptu-

ally weighted filter with the original signal as input. The prediction error is 

 [ ] [ ] [ ].e n x n gx n L= − −  (20) 

The squared-error for a frame can be written as 

 2[0,0] 2 [0, ] [ , ],L R gR L g R L Lε = − +  (21) 

where the correlation terms are defined as 

 
1

0
[ , ] [ ] [ ].

N

n
R i j x n i x n j

−

=
= − −∑  (22) 

The open-loop pitch is determined for two subframes at a time. This means that the summa-

tion is over 120 samples. The optimum value of gain for a given lag is 

 [0, ] .
[ , ]opt

R Lg
R L L

=  (23) 

With this value of gain the squared error for a frame is 
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Fig. 2  Formant weighting filter response. 
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The best lag value L  is chosen by maximizing the reduction in error as given by the second 

term in the equation above,  

 
2[0, ]max .

[ , ]o
L

R LL
R L L

=  (25) 

The denominator of the second term can be computed recursively, 

 2 2[ 1, 1] [ , ] [ 1] [ 1 ].R l l R l l x i x N i+ + = + − − − − −  (26) 

The search is done from small lags to large lags. Only lags with positive values of [0, ]R L  are 

pitch candidates. Given a current lag candidate oL , a close-by lag giving a reduced squared error 

becomes the next lag candidate, i.e., the new lag is chosen if  

 
22

min
[0, ][0, ] , .

[ , ] [ , ]
o

o
o o

R LR L L L dL
R L L R L L

> − <  (27) 

However, if the search encounters a reduced squared error that is not close by the current 

candidate, that new reduction in error must be substantially greater than that for the current can-

didate, 

 
22

min
[0, ][0, ] , ,

[ , ] [ , ]
o

o
o o

R LR L A L L dL
R L L R L L

> − ≥  (28) 

where A  is 4/3. This additional check is done to try to avoid choosing pitch multiples. 

3.6 Harmonic Noise Weighting 

Another component of the overall perceptual filtering to form the target signal is a harmonic 

noise-weighting (HNW) filter. This is a single tap FIR filter of the form 

 [ ] [ ] [ ].y n x n gx n L= − −  (29) 

This is a gain reduced gain version of a pitch predictor.  

The lag L  is chosen by searching around the open-loop pitch value. The HNW is found for 

every subframe even though the open-loop pitch values are for two subframes at a time. The 

choice of lag is governed by the same equations as for the open-loop pitch search, but a separate 

set of lags and coefficients is determined for each subframe. This means that the summation for 

the determining the correlation values is over 60 samples. 
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As a final check, the HNW filter is only used if the prediction gain is sufficiently high. The 

prediction gain is the ratio of the input energy to the output energy, 

 
2

[0,0]

1 .
[0, ]1

[0,0] [ , ]

G
opt

RP

R L
R R L L

ε
=

=
−

 (30) 

The prediction gain should be larger than a given minimum value, 

 
min

2 min

min

1[0, ] [0,0] [ , ].
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>
−

>
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The gain is set to zero if the gain value is negative or the prediction gain condition 

( min 1.6GP = ) is not satisfied. In addition, the gain is limited to at most one. The HNW filter is 

formed by reducing the gain so found by a multiplicative factor (10/32). This gives a filter that 

deemphasizes the pitch harmonics and emphasizes the spectrum between pitch harmonics. 
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Fig. 3  Harmonic noise weighting filter response ( 0.2, 40g L= =  

(200 Hz)) 
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4 Analysis-by-Synthesis Target Signal 

The concept in analysis-by-synthesis (AbS) is to generate outputs corresponding to different 

choices of excitation signal parameters. Conceptually, a candidate excitation signal is passed 

through the LP synthesis filter and compared to the input speech. The combination of parameters 

that create the best reconstructed speech is chosen. A perceptually motivated weighting filter is 

used to weight the error between the input signal and the reconstructed signal. The weighting fil-

ter is the formant-weighting filter in cascade with the harmonic noise-weighting filter. 

With some manipulation of the block diagram, the weighting filter can be moved into the in-

put signal path and into the excitation signal path as shown in Fig. 5. This rearrangement has 

computational advantages since the input signal only has to be filtered once for each subframe. 

The input signal filtered by the weighting filter is termed the target signal. 

The excitation signal has to be filtered many times in the AbS procedure. The output of the 

excitation branch is the sum of two parts, a zero-state response and a zero-input response. The 

zero-state response is the same for all candidate excitation signals for a particular subframe. As 

such, it can be calculated once. For convenience, this zero-input response can be subtracted from 

the target signal. The zero-state output of the excitation branch is then compared with the modi-

fied target signal. Furthermore, the composite filter in the excitation signal path can be repre-

sented by the overall impulse response of a weighted synthesis filter. 

Fixed
Codebook

Adaptive
Codebook

1
( )A z

LP
Synthesis Filter

Error
Weighting FilterInput Speech Weighted

Error
-

+

Reconstructed
Speech

 
Fig. 4  Analysis-by-Synthesis CELP coding. 
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The excitation consists of two components. An adaptive codebook contribution that is in es-

sence is a segment of the past excitation. This supplies the pitch-like components by placing repe-

titions of past pitch pulses into the correct position in the excitation. The second excitation com-

ponent is the fixed codebook contribution. This supplies missing details in the excitation. The 

search procedure for the best excitation is done sequentially. First an adaptive codebook contribu-

tion (pitch contribution) is determined assuming the fixed codebook contribution is zero. Then the 

fixed codebook contribution is added. 

The contribution to the reconstructed signal is determined by passing the excitation through 

a weighted synthesis filter. This has an all-pole synthesis filter (as will be used in the decoder) 

based on the quantized LP parameters, a formant weighting filter based on the unquantized LP 

parameters, and a harmonic noise-weighting filter. Let the weighted synthesis filter have impulse 

response [ ]wh n . This is a causal infinite response, but we will only need the first N  values of the 

response, where N  is the subframe length. 

For convenience, a custom routine WSyn is used to implement the weighted synthesis filter 

(it uses PZFilter internally). It has as input the filter state and the input signal, and has as out-

put the output signal and the updated state. The routine WSyn is used in three ways: 

• Before processing a subframe, WSyn is used to calculate the impulse response (zero-state, 

a unit impulse sequence as input; impulse response as output, discard the updated state). 

• Before processing a subframe, WSyn is used to calculate the zero-input response to be 

subtracted from the target signal (previous state, an all-zero sequence as input; zero-state 

response as output, discard the updated state). 
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Synthesis Filter

Error
Weighting Filter

Input Speech Weighted
Error

-

+Error
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Fig. 5  Restructured Analysis-by-Synthesis CELP Coding 
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• After generating the excitation for a subframe, WSyn is used to update the filter state 

(previous state, excitation as input; discard the filter output, save the updated filter state). 
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5 Subframe Level Processing 

5.1 Adaptive Codebook 

The adaptive codebook (ACB) supplies the pitch contribution to the excitation signal. The 

pitch filter is a multi-tap IIR filter of the form 

 [ ] [ ],
U

L

K

p k
k K

e n b e n k L
=

= − −∑ �  (32) 

where [ ]e n�  is a pitch repeated version of the past excitation, 

 
[ ], 0,

[ ]
[mod( , ) ], 0.

e n n
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e n L L n
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= ⎨ − ≥⎩
�  (33) 

The past excitation contains both the ACB and fixed codebook contributions. The ACB generates 

only the pitch-like contribution to the current excitation. The pitch repetition is necessary for 

short pitch lags since the full excitation for the current subframe ( 0n ≥ ) has not been generated 

yet. With the large subframe size used in G.723.1 (60 samples), this repetition is called into play 

quite often. The pitch filter uses 5 taps, with the reference tap being in the middle ( 2LK = −  and 

2UK = ). However, contrary to one’s expectations, the tabulated vectors of ACB coefficients do 

not always have the largest coefficients near the middle of the filter. 

The ACB coefficients are taken from one of two codebooks. The first has 85 entries; the 

second has 170 entries. The first codebook is used for short pitch lags, while the second is used 

for larger pitch lags. When the first codebook is used, the bit saved in using the shorter codebook 

is reserved for use by the multipulse coding procedure. It is to be noted that the switch of code-

books depends on the lag chosen in the even-numbered subframes (0 and 2). Thus the codebook 

used for subframes 0 and 1 depends on the lag chosen for subframe 0 and the codebook used for 

subframes 1 and 2 depends on the lag chosen for subframe 1. 

The adaptive codebook has two modes. In the even-numbered subframes (0 and 2), the lag is 

sent as an absolute value. The search for lags in the even-numbered subframes is done in a limited 

range (-1 to +1) around the open-loop lag determined earlier. This is done to reduce computa-

tions. In the odd-numbered subframes (1 and 3), the lag is coded relative to the previous sub-

frame. The lag offset is coded with 2 bits, allowing the lag for odd-numbered subframes to have 

lags offset from –1 to +2 relative to the lag of the previous subframe. 
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In vector-matrix notation, the pitch contribution to the excitation is 

 ,p L=e E b�  (34) 

where pe  is an 1N × vector of pitch contributions, LE�  is an bN N×  matrix of repeated excitation 

signals, and b  is an 1bN × vector of pitch coefficients, 
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 (35) 

The contribution to the reconstructed signal is obtained by passing pe  through the weighted 

synthesis filter. One has to be careful here: we are interested in the zero-state response, so the past 

excitation is implicitly zero. Filtering pe , we get 

 ,p L=s S b  (36) 

where LS  is an bN N×  matrix formed by convolving the columns of LE�  with the convolution 

matrix containing the impulse response coefficients of the filter, 
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In the Matlab code, this operation is carried out column-by-column using the Matlab filtering rou-

tine. 

Recursive Computation 

In the reference code, a recursive approach is used to reduce computations. Since the col-

umns of LE�  are shifted versions of each other, a column ke�  (columns numbered from LK  to 

UK ) can be expressed as 
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 (38) 
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The filtered version of this column can be expressed as 
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where P  is the shift matrix and H  is the impulse response matrix. The shift matrix when used as 

a premultiplier, shifts the elements of a column down; when used as a postmultiplier, it shifts 

rows to the left. Since H  is Toeplitz, these operations are the same and =HP PH . Then recur-

sive update to ks  is 
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Optimal Pitch Contribution 

Give a target vector t , the squared error is 
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The cross-correlation matrix LtsR  is 1 bN× ; the correlation matrix LssR  is b bN N× . The search 

for the best ACB is over lags and over coefficient vectors. The lag search range is limited as de-

scribed earlier. For a given lag, the search for the best coefficient vectors amounts to maximizing 

the sum of the last two terms in the previous expression, 

 max(2 ).T
opt Lts Lss= −

b
b R b b R b  (42) 

This is the formulation used in the Matlab routine. 
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The figure below shows an example of the action of the adaptive codebook. In this case, the 

two almost equal coefficients in the coefficient vector serve to interpolate between integer lag 

values. 

Streamlined Comparison 

In the reference code, a streamlined version of this computation is used. The quadratic form 
T

Lssb R b  is symmetric and so nearly half of the computations can be avoided, 
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 (43) 

The product terms k mb b  can be pre-computed. 

The final step in the streamlining is to make two vectors of the components in the computa-

tion; one with correlation terms and one with coefficient terms. The correlation terms are the bN  

cross-correlations LtsR , the bN  diagonal terms [ , ]LssR k k , and the ( 1) / 2b bN N −  off-diagonal 

terms of  [ , ]LssR k m . The coefficient terms are the bN  coefficient 2b , the bN  diagonal terms 

2
kb− , and the ( 1) / 2b bN N −  off-diagonal terms 2 k mb b− . The test for the best vector of coeffi-

cients is then the dot product of the vector of correlation terms and the pre-computed vector of 

coefficient terms. 
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Fig. 6  Adaptive codebook contribution, 90L = , [0.06 0.17 0.63 0.59 0.17]= − −b . 
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Target Signal Update 

After determining the ACB contribution, this contribution is subtracted from the target sig-

nal to give a modified target signal that will be the target for the multipulse search, 

 .L opt′ = −t t HE b�  (44) 

Pitch Taming Procedure 

The adaptive codebook search uses some “taming” procedures that in some still obscure 

ways are meant to help reduce distortion in the case of frame loss. The adaptive codebook gain 

values are ordered from small to large. The range of ACB gain indices to be searched is limited 

by the “taming” procedure to include only the small gain values. The taming procedure uses the 

sine detector described earlier. Since the taming has no effect during normal speech, the efficacy 

and correctness of this process is still in question. 

5.2 Multipulse Coding 

The multipulse excitation uses 6 pulses per subframe in subframes 0 and 2 and 5 pulses per 

subframe in subframes 1 and 3. All the pulses for a subframe must be placed on one of two grids: 

even-numbered positions or odd-numbered positions. One bit is used to specify which of the grids 

should be used. There are then 30 pulse positions in which to place either 6 or 5 pulses. The 

pulses for a subframe all have the same amplitude (one of 24 quantized values), but the signs are 

specified separately with 6 or 5 bits per subframe. 

Pitch Repetition 

For short pitch lags, the multipulse excitation is subject to a pitch repetition. A single bit is 

used to determine whether to use this pitch repetition or not. The option to use pitch repetition is 

available for subframes 0 and 1 whenever the pitch lag for subframe 0 is less than 58. The option 

to use pitch repetition is available for subframes 2 and 3 whenever the pitch lag for subframe 2 is 

less than 58. The bit to signal whether to use pitch repetition is available for short pitch lags be-

cause for these short pitch lags, the ACB gain table is smaller by a factor of 2 compared to longer 

pitch lags. 

The multipulse repetition can be achieved in one of two ways: by repeating the pulses or by 

repeating the impulse response. During the multipulse search, the second method is used. During 

speech synthesis, the first method is used. The pitch repeated impulse response is given by 
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 [ ]
0

[ ] , 0 1,
uK

k
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=
= + ≤ ≤ −∑�  (45) 

where the upper limit is ( 1) /uK N L= −⎢ ⎥⎣ ⎦ . 

Pulse Positions and Amplitudes 

The search for the pulse positions and amplitudes is done in nested loops. The outermost 

loop tests whether to use pitch repetition or not. The next loop is over the two possible grids. The 

next loop is a search over pulse amplitudes. The innermost loop, generates finds the pulse loca-

tions sequentially. 

The formalism for choosing the next best pulse position can be formulated as follows. Let 

the target vector be [ ]t n  (after being compensated for by the adaptive codebook contribution) and 

the impulse response of the weighted synthesis filter be [ ]h n  (actual impulse response or the 

pitch repeated impulse response). If we place a pulse of amplitude mg  in position m , the error is 

 2[ ] 2 [ ] [0,0],t m th m hhE m E g R m g R= − +  (46) 

where 
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and 
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The optimum value of gain can be found as 

 [ ] .
[0,0]

th
opt

hh

R mg
R

=  (49) 

We will choose mg  from a fixed set of quantized amplitudes, but allowing mg  to take on ei-

ther sign. To reduce complexity, we use a quantized estimate of the gain and search over quan-
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tized gain amplitudes nearby the estimated gain. If the gain which minimizes Eq. (46) is denotes 

as optg , the error in using another value of gain can be expressed as 

 2
min[ ] [ ] ( ) [0].m opt hhE m E m g g R= + −  (50) 

The quantized gain that minimizes the mean-square error is that value which is closest to optg . 

Estimating the Pulse Amplitude 

The pulse position that gives the biggest reduction in squared error is found as 
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Once the best position is found, optg  for that pulse is given by Eq. (49). The quantized value of 

gain ˆmg  nearest optg  is found. If the table of quantized amplitudes has elements [ ]gA i , the index 

of the quantized amplitude is found as 
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min ( ) [0,0] [ ] .

g opt gi

g hh thi
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A i R R m
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= −
 (52) 

The search for the gain that is used for all of the pulses is limited to quantized gain values near 

[ ]gA i  (relative indices -2 to +1). 

Now we can loop over the reduced set of quantized gain amplitudes. The same amplitude 

will be used for all pulses in a subframe. 

Pulse Positions 

Given the trial quantized gain, the error for a trial position is (from Eq. (46)), 

 2[ ] 2 ( ) [ ] ( ) [0,0],t g th g hhE m E A i R m A i R= +∓  (53) 

where the upper sign is used if the pulse is positive and the lower sign is used if the pulse is nega-

tive. The position that gives the lowest squared error is 
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 ( )max [ ] .th
m

M R m=  (54) 

The sign of the pulse is determined by the sign of [ ]thR M , 

 sign( [ ]) ( ).M th gg R M A i=  (55) 

Once a pulse position and pulse gain has been found, the effect of that pulse can be sub-

tracted from the target signal, 
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Using this expression, the cross-correlation can be updated, 
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With the updated cross-correlation, the next pulse can be placed. As each pulse is placed, the po-

sition it occupies is marked as occupied to prevent a subsequent pulse being placed in the same 

position. 

Coding the Pulse Positions 

The pulse positions are coded using the combinatorial coding procedure described in 

Appendix B. The procedure generates a code for each subframe. The codes take on 

( )30 5937756 =  values for even subframes and ( )30 1425066 =  values for odd subframes. The 

minimum number of bits required to code the pulse positions is 73 bits. This is accomplished by 

splitting the coding as follows. 

• Express the code for a subframe as i i i iC p M q= + , where /i i ip C M= ⎢ ⎥⎣ ⎦  and 

mod( , )i i iq C M= . The modulus value is 162  for even subframes and 142  for odd sub-

frames. 

• The iq  values are coded with 16 or 14 bits. 
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• The excess values are coded as 3 2 1 09 90 810xC p p p p= + + + . This value can be repre-

sented with 13 bits. 

Differences from the Reference Code 

The multipulse coding differs in small details from the reference code. As an example, if 

several pulse positions are equally good, the reference code uses the last of the equally good posi-

tions. The Matlab implementation uses a max operation that returns the first of the equally good 

positions. Reversing the order of the grid positions during the search has reduced the differences 

with respect to the reference code. 

The combinatorial coding procedure used in the Matlab code differs from that in the refer-

ence code. In the terms of the analysis of Appendix B, the reference code generates a code that 

marks the positions of non-pulses. The Matlab code uses the more efficient process of coding po-

sitions of the pulses and then “reverses” the code to the give exactly the same result as the refer-

ence code. 
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6 Decoder 

The decoder is shown in Fig. 7. The decoder does no searching, so is computationally much 

less onerous than the coder. The steps involved in generating the reconstructed speech are as fol-

lows. 

• Generate the quantized LP parameters for each subframe. 

o Decode the quantized LSF values. 

o Correct for improperly ordered or closely spaced LSF values. 

o Interpolate the quantized LSF values from the quantized LSF values from the last 

frame to create a vector of quantized LSF values for each subframe. 

o Convert the LSF values to the corresponding LP coefficient values. 

• Decode ACB and multipulse parameters. 

• Generate the excitation for each subframe. 

o Generate the ACB contribution to the excitation. 

o Generate the multipulse contribution to the excitation. 

o Filter the total excitation with the LP synthesis filter. 

Notes 

The combined excitation signal is saved for use in future subframes. The excitation signal 

that is saved is clipped. The clipping level is just below full scale (1 for the Matlab version and 

32768 for the reference code). The output signal, however, is created from the unclipped excita-

tion. 
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1
( )A z

LP
Synthesis Filter

Reconstructed
Speech

 
Fig. 7  Decoder 
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Appendix A Sine Detector 

Consider samples from a discrete-time sine wave. This signal has a spectrum with two poles 

on the unit circle, 

 1 2
1( ) .

1 2cos o
S z

z zω − −=
− +

 (58) 

The optimal prediction error filter will generate zeros to cancel the poles, 

 1 2( ) 1 2cos .oH z z zω − −= − +  (59) 

The corresponding predictor has coefficients 2cos oω  and -1. 

This analysis shows that a 2-tap predictor can exactly predict the next value of a sine from 

the previous two samples. This can be written as 

 [ ] 2cos [ 1] [ 2],os n s n s nω= − − −  (60) 

where [ ] cos( )os n nω φ= +  and can be verified using standard trigonometric identities. Note that 

for an optimal predictor, the last coefficient is equal to the negative of the last reflection coeffi-

cient. Thus a second reflection coefficient of 1 indicates a sine wave. 

In a speech coder, the windowing of the signal will mean that the calculated correlations are 

not exactly that for a sine wave and the predictor coefficients are not exactly those needed to pre-

dict a sine. However, for reasonable size frames, the second reflection coefficient will be near 

unity and hence this value can be used to detect the presence of a sine. 
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Appendix B Combinatorial Coding 

The problem under consideration is how to code the pulse positions. Combinatorial coding 

assigns a code for each combination of pulse positions. The procedure for doing this coding has 

been reinvented many times, possibly described first in the engineering literature in [3]. 

K  pulses are placed in N  possible positions. Let the pulse positions be ordered and let the 

positions be numbered from 1 to N . The minimum number of bits for coding the positions of 

randomly placed pulses can be determined from a combinatorial argument. The total number of 

different combinations of K  pulses in N  positions is ( )N
K . If each possibility is equally likely, 

the coding requires at least 

 ( )min 2log NN K=  (61) 

bits. This is the lower bound on the number of bits required to code unconstrained random pulse 

positions. Direct coding of the pulse positions is much more expensive, requiring 2logK N  bits. 

For G.723.1, the number of positions is 30 and the number of pulses is either 6 (even subframes) 

or 5 (odd subframes). For the even subframes, minN  is 19.2 bits, while direct coding would re-

quire 29.4 bits.  

The pulse positions for a block can be coded by directly tabulating the ( )N
K  possible combi-

nations of pulse positions. Consider a binary N -vector of weight K . Ones mark the positions of 

the pulses, while zeros mark the empty positions. Index the vectors from 0 to ( ) 1N
K − , with the 

vectors arranged in lexicographic order. For this purpose, number the data positions from 1N −  

for the most significant position to 0 for the least significant position. 

The following algorithm can be used to determine the index for a given data vector. The vec-

tor is searched from the most significant (lexicographic) position to the least significant position, 

n  running from 1N −  to 0. Whenever a one is encountered in position n , the index is increased 

by ( )1n
m
−  where m  is the number of ones yet to be found. The resulting value is the index to the 

lexicographic ordering. The complementary problem of determining a data vector containing 
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pulse positions can be solved by comparing the index value with the same combinatorial values to 

determine if a one or zero should be placed in a given position. 

The pulse coding problem may be viewed as finding a path through the trellis shown in Fig. 

8. Moving diagonally downward in the trellis decreases the number of pulses remaining. Moving 

across in the trellis decreases the number of positions remaining. Each node in the trellis is la-

belled with a combinatorial term. If a pulse (a one) is encountered, the value at the node is added 

to the index and the downward diagonal path is taken. Now solve the sub-problem with one fewer 

position and one fewer pulse. If no pulse (a zero) is encountered, the index remains unchanged 

and a horizontal path is taken. Now solve the sub-problem with one fewer position. 

At a given horizontal level in the trellis, the values on the nodes decrease in moving to the 

right, 

 ( ) ( ) for 1.n n k km m
−> ≥  (62) 

The index determined as described will reflect a strict lexicographic ordering—moving a pulse 

from a more significant position to a less significant position can only decrease the index value. 

Furthermore, the index value corresponding to a pulse configuration is unique. 

The largest index value results when the leftmost diagonals in the trellis are traversed, 
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Fig. 8  Combinatorial coding trellis. 
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The smallest index value results when the rightmost diagonals are traversed, 

 min 0.i =  (64) 

Therefore, the index determined by the algorithm takes on all ( )N
K  integer values. 

The decoding problem can also be viewed as traversing the trellis. This time the index value 

is compared to the value at the node. If it is as large, a pulse is placed in that position. The justifi-

cation for this comes from Eq. (63) 

The contribution to the index value of all subsequent pulses is strictly less than that for a 

single pulse at the position under consideration. If a pulse is placed at that position, the index 

value is then decreased by the value at that node and the algorithm can be repeated on a sub-

problem with one less position and one less pulse. The total number of comparisons to be made is 

1n − . 

The combinatorial terms on the nodes of the trellis can be stored as a table of values. If the 

table size is considered excessive, these terms can be computed recursively using a single multi-

ply and divide. This is possible since ( )n
m , is followed by either ( )1

n
m −  or ( )1

1
n
m

−
−  on a path 

through the trellis. A strategy that falls between a full table and full computation stores the com-

binatorial terms for the top row of nodes. When the path traversed descends from the top row, the 

values for the next row of nodes can be determined from ( ) ( ) ( )1 1 ,1
n n n
m m m

− −= −− avoiding multi-

plications and divisions. 

This coding procedure requires K  additions and K  references to combinatorial terms. The 

decoding requires N  references to the combinatorial terms, but still only K  additions. The com-

binatorial terms can be stored in a table of less than K N  values. Alternately several algorithms 

are available to generate the required terms recursively. 


