

ITU-T G.723.1 Speech Coder:
A Matlab Implementation

P. Kabal

Department of Electrical & Computer Engineering

McGill University

Version 1: 2003-11-21

An Implementation of ITU-T G.723.1 i

Table of Contents

1 Introduction..1
2 Generalities ..2

2.1 Input / Output..2
2.2 Filters ..2
2.3 Data Values and Tabulated Value..2

3 Frame Level Processing...3
3.1 LP Analysis ...4
3.2 Sine Detector ..7
3.3 LSF Quantization..7
3.4 Formant Weighting Filter..9
3.5 Open-Loop Pitch Estimation ..10
3.6 Harmonic Noise Weighting...11

4 Analysis-by-Synthesis Target Signal ...13
5 Subframe Level Processing..16

5.1 Adaptive Codebook ..16
5.2 Pitch Taming Procedure..20
5.3 Multipulse Coding ..20

References ..26
Appendix A Sine Detector ...27
Appendix B Combinatorial Coding...28

An Implementation of ITU-T G.723.1 1

ITU-T G.723.1 Speech Coder:
A Matlab Implementation

This report documents the details of the processing steps in the ITU-T G.723.1

Speech Coder. This report accompanies an implantation of that coder in Matlab. The Mat-

lab implementation was designed to facilitate experimentation and research using a prac-

tical speech coder as a base.

1 Introduction

This document describes the ITU-T G.723.1 speech coder [1] and a Matlab implementation

of that coder. The implementation is based on the ITU-T floating-point reference code. G.723.1 is

a CELP (Code-Excited Linear Prediction Coder). The Matlab implementation supports the mul-

tipulse coding mode (operating at 6.3 kb/s). This document gives an overview of the coder and

decoder, and fills in details of the processing steps.

The implementation gives results that are close but not identical to those from the reference

code. Careful checking of several input files has shown that the differences are in isolated frames.

The first subframe in the first frame is problematic, because that subframe is all zeros. The

placement of pulses in that subframe influences future subframes (since the pulse amplitudes are

always non-zero). Fortunately, differences in the first frame tend to stay isolated to that frame.

Occasionally, the quantized predictor coefficients will differ from those generated by the refer-

ence code. The effect of that difference tends to propagate for several frames. In all cases, the

output coded speech is indistinguishable from that produced by the reference code.

Given a bitstream file, the decoder implemented in Matlab generates the same speech file as

the reference code.

Unimplemented Features

At the moment, the coder works only at 6.3 kb/s. It does not implement the voice activity

detector (VAD) feature. The decoder also works only at 6.3 kb/s and does not handle lost frames

or inactive frames. In addition, the postfiltering operations have not been implemented in the de-

coder.

An Implementation of ITU-T G.723.1 2

2 Generalities

2.1 Input / Output

The input to the Matlab version of the coder is a speech file (8 kHz sampling rate) in one of

several file formats (WAVE, raw, AU, Sphere). The output of the coder is either a bitstream file

(compatible with the reference code) or a Matlab data file. The former contains codes and corre-

sponds to the compressed bitstream from the coder. The latter stores values, rather then codes,

and can be used to pass, for instance, unquantized values to the decoder.

The decoder takes as input either a bitstream file (from the Matlab implementation of the

coder or the reference code implementation of the coder) or a data file (from the Matlab imple-

mentation of the coder). Its output is a WAVE file.

2.2 Filters

Many of the filters are implemented using a custom Matlab routine, PZFilter. This rou-

tine is an interface to the Matlab routine filter, which uses a direct form II structure. If a filter

starts in zero-state and has constant coefficients, then the Matlab routine filter can be used

directly. This is the case for the highpass filter used as a preprocessing step in the coder. However,

for other filtering operations in which the coefficients change from frame-to-frame, the structure

of the filter affects the results. The routine PZFilter does the extra operations (using the Mat-

lab routine filtic) necessary to use the past input data and past output data as state values,

thereby duplicating the results of the filtering as done in the reference code.

2.3 Data Values and Tabulated Value

This implementation uses the Matlab convention of audio data normalized to a full-scale

value of unity. This means that internal data values will be 1/32768 of the values in the reference

code. This scaling is kept throughout the program.

There are a number of tables in the reference code. The Matlab code can read these tables,

but can also generate the data for many of the tables on the fly. For instance, the analysis window

for LP analysis can either be read from a table (taken from the reference code and stored with 6

digits of accuracy) or generated at startup with full precision. Quantizer tables are read in from

files.

An Implementation of ITU-T G.723.1 3

3 Frame Level Processing

The coder and decoder operate on two time scales: a frame of 240 samples that is divided

into subframes of length 60. The frame level operations involve the following steps.

• Highpass filter the input signal.

• Form an extended (highpass filtered) signal consisting of three parts: look-back samples,

current frame samples, and look-ahead samples. The current frame samples are divided

into 4 subframes.

• Linear prediction analysis is done on each subframe. This creates four sets of LP coeffi-

cients, one for each subframe.

• The LP coefficients for the last subframe (subframe number 3) are quantized (in the LSF

domain, as described below).

• The quantized LP coefficients are linearly interpolated (in the LSF domain) using the

quantized LP coefficients from the previous frame. This creates four sets of quantized LP

coefficients, one for each subframe, the last of these being the quantized LP coefficients

for subframe 3. These quantized coefficients will be used for the synthesis filter.

• The unquantized LP coefficients (4 sets) are used to form a formant perceptual weighting

filter. This filter is used to weight the error signal during the search for the best excitation

parameters, in effect directing the search procedure to take into account psycho-acoustic

properties.

• The input signal (after highpass filtering) is processed with the formant perceptual

weighting filter. The output of this filter is used to form an initial estimate of the pitch

lag. This is termed the open-loop pitch estimate. This estimate is based on two subframes

at a time, giving two open-loop pitch estimates per frame: one for subframes 0 and 1, and

another for subframes 2 and 3.

• The open-loop pitch estimate is used to generate a second weighting filter, the harmonic

noise weighting filter, which tends to emphasize the harmonic peaks during voiced

speech.

• The input signal, processed by the combination of highpass filter, formant weighting fil-

ter and harmonic noise weighting filter forms the so-called target signal.

An Implementation of ITU-T G.723.1 4

3.1 LP Analysis

The linear prediction (LP) analysis operates on the highpass filtered signal. LP analysis is

carried out for each subframe. A 180 sample Hamming window is applied for each subframe. The

window is centred on a subframe and so extends on either side of the subframe (60 samples back,

60 samples over the subframe, and 60 samples ahead). The look-back for the frame is 60 samples

to accommodate the backwards extent of the window when processing the first subframe. The

look-ahead for the frame is 60 samples to accommodate the forward extent of the window when

processing the last subframe. The positions of the windows for the subframes are shown in Fig. 1

Let the highpass filtered data for a subframe be []x n . This is the data lying under the analy-

sis window for that subframe. The windowed data is

 [] [] [] 0 1.w wx n x n w n n N= ≤ ≤ − (1)

The prediction error is

1

[] [] [].
pN

w k w
k

e n x n c x n k
=

= − −∑ (2)

For this equation, we can let n take on all values if we define []wx n to be zero for 0n < and

wn N≥ . Then writing the error in vector-matrix form,

(1)(0) (1)

(0) .

pN
w w w

w w

−⎡ ⎤= − ⎢ ⎥⎣ ⎦

= −

e x x x c

x X c

"
 (3)

where ()k
wx is a shifted version of the windowed data vector,

0 60 120 180 240

0 1 2 3
new dataold data

Fig. 1 LP windows.

An Implementation of ITU-T G.723.1 5

 (0) (1)

0 0
[0] 0
[1] [0]

, ,
[2] [3]
[1] [2]

0 [1]

w

w w

w w

w w w w

w w w w

w w

x
x x

x N x N
x N x N

x N

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥

− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

x x

#

"# #

#

 (4)

The vector are shown as infinite in extent, but have only wN non-zero elements. LP analysis

chooses a set of predictor coefficients to minimize the squared-error,

 (0) (0) (0)2

[0] 2 ,

T

T T T
w w w w w w

T Tr

ε =

= − +

= − +

e e

x x x X c c X X c

c r c Rc

 (5)

where the correlation values are functions of the time differences,

 () ()

[0] [1] [1][1]
[2] [1] [0] [2]

[] , , .

[] [1] [2] [0]

p

pn T n k
w w

p p p

r r r Nr
r r r r N

r k

r N r N r N r

−

−⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥= = = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦ ⎣ ⎦

x x r R

"

"
%

"

 (6)

In the LP analysis for G.723.1, the correlation values are lag windowed (see [2]),

 () () ().lr k r k w k′ = (7)

The lag window is often chosen to have a Gaussian shape. Multiplying the correlation values by

the Gaussian window is equivalent to convolving the power spectrum of the windowed signal by

another Gaussian shape. The values of the lag window used in G.723.1 correspond approximately

to a Gaussian frequency response with a one-sided bandwidth of 43 Hz.

The LP analysis also uses white noise compensation,

 [] [](1 []),r k r k kµδ′′ ′= + (8)

where 1/1024µ = . The use of this white noise is equivalent to using a modified error criterion

 [0] 2 .T T Trε µ′ = − + +c r c Rc c c (9)

An Implementation of ITU-T G.723.1 6

In this form, we can see that the error criterion has been augmented with a Lagrange multiplier

that controls the sum of the squares of the coefficient vector.

The LP equations can be efficiently solved using the Durbin-Levinson recursion to give the

optimal predictor coefficients,

 .opt =Rc r (10)

Differences from the Reference Code

• The linear prediction analysis uses the built-in Matlab routine levinson. This may

cause some small differences in the resulting values compared to the reference code.

• The reference code (function Comp_Lpc) scales the autocorrelation values by 21/ fN ,

where fN is the frame length (240). This is not done in the Matlab code since the LP

analysis is insensitive to scaling.

• The correlation is lag windowed. In the reference code, the lag window is defined in a ta-

ble. The documentation indicates that the lag window is based on binomial coefficients.

The Matlab code can read the table of lag window values or calculate a Gaussian lag win-

dow,

 2
BW

1[] exp((2)).
2

w k f kπ= − (11)

The reference code defines the lag window to 6 digits (values near unity). The value of

BWf which best matches the tabulated values is 42.4869/8000 (42.5 Hz for a 8000 Hz

sampling rate). The maximum error in window values is 75 10−× . An attempt was to find

a true binomial window that matches the tabulated data. The closest binomial window is

a binomial window of length 4001N = . Normalizing the window with respect to the

middle coefficient and selecting the 11 coefficients starting with the middle coefficient

gave an error of more than 0.001 with respect to the tabulated values.

• The reference code checks for zero energy, and if found, short-circuits the calculation of

the remaining correlation coefficients by setting them to zero. The Matlab implementa-

tion does not do this check.

An Implementation of ITU-T G.723.1 7

• The reference code for the Levinson-Durbin recursion (function Durbin) checks for

numerical problems by checking for decreasing absolute error with order.1 If an increase

in error is found, the order recursion is aborted. The predictor coefficients have been ini-

tialized to zero, so in effect, any higher order predictor coefficients are set to zero. In ad-

dition, the second reflection coefficient is set to 0.99. This value is used outside the rou-

tine as a sine detector (used by the pitch prediction routine).

3.2 Sine Detector

After the Levinson recursion, a sine detector based on the second reflection coefficient is

applied. The theory behind this scheme is described in Appendix A. The presence of a sine is sig-

nalled by a second reflection coefficient larger than 0.95. The sine detector pushes a one or a zero

onto a 15-bit word. If 14 or more bits are set, a flag (the 16th bit) is set. In the Matlab code, an

array is used to store the binary values. The sine detector is used in the adaptive codebook search

and in the Voice Activity detector feature.

3.3 LSF Quantization

The quantization of the LP parameters is done in the line spectral frequency (LSF) domain.

One set of LP parameters per frame is quantized. Before quantization, the LP parameters have an

additional bandwidth expansion applied

 [] [],kc k c kγ′ = (12)

where 0.994γ = , corresponding to a one-sided bandwidth expansion of 25 Hz.

The LP coefficients are converted to LSF parameters. Let the LSF parameters be denoted by

iω , 1 pi N≤ ≤ . The LSF parameters are an ordered set of values between 0 and π . A vector of

fixed average values is subtracted from the LSFs to give a set of mean-removed LSFs,

 .= −ω ω ω� (13)

The quantized LSFs from the previous frame are used to predict the LSFs for the current frame.

The prediction error is

1 This check ignores small negative errors, which also signal numerical problems.

An Implementation of ITU-T G.723.1 8

() ()ˆ

ˆ (1) ,
P

P

b
b b

= − − −
= − − −

ω ω ω ω ω
ω ω ω

�
 (14)

where 12 / 32b = . This formulation will give a zero error when the current and the previous quan-

tized LSFs are equal to the mean values. The prediction error vector is then quantized.

The quantizer finds the best codebook entries in the sense of a weighted squared-error. The

weighting function is a diagonal matrix with entries equal to inverse of the distance of a particular

LSF to its closest neighbour. The entries of the diagonal of the weighting matrix are

2 1

3 2

1
1 21

1 , .

min ,
p pp

N NN

ω ω
ω ω

ω
ω ωω − −−

−⎡ ⎤
⎢ ⎥−⎢ ⎥= ∆ = ⎢ ⎥⎛ ⎞∆⎡ ⎤∆⎡ ⎤ ⎢ ⎥⎜ ⎟⎢ ⎥⎢ ⎥ −∆⎜ ⎟ ⎢ ⎥∆ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦⎝ ⎠

w ω
ω

ω

(15)

The weighted error is

 ˆ ˆ() ().Tε = − −ω ω W ω ω� � � � (16)

The quantizer is a 3-split quantizer with dimensions 3-3-4. The error computation is spit by

dimension with separate quantization of each subvector. The reconstructed LSF vector is given by

ˆˆ ˆ()
ˆ ˆ (1) .

C P

P

b

b b

= + − +

= + + −

ω ω ω ω ω

ω ω ω

�

�
 (17)

Since the subvectors are quantized independently, the final vector may have closely spaced or

improperly ordered LSFs. Measures are taken to correct these cases. The minimum separation of

two LSFs is to be minω∆ . If any differences are less than this value, the offending LSFs are each

moved to min / 2ω±∆ of their average value. This process may have to be repeated several times.

After quantization and imposing a minimum separation, the LSF values for each frame are

linearly interpolated to give LSF values for each subframe,

 1ˆ ˆ ˆ(1) , , 0 1.k k C k P k s
s

k k N
N

α α α += + − = ≤ ≤ −ω ω ω (18)

Difference with the Reference Code

• The conversion to LSFs is done using the Matlab routine poly2lsf. This difference

occasionally gives rise to different quantized values.

An Implementation of ITU-T G.723.1 9

• If the reference code fails to find all of the LSFs (due to numerical problems), it reverts

to the previous set of quantized LSFs.

• The LSF values in the reference code take on values from 0 to 256, corresponding to the

radian frequencies 0 to π . The values in the Matlab implementation are in radians.

• The LSF means (tabulated) have been converted to radian values.

• The LSF quantizer tables have been converted to radian values as have the parameters

controlling the minimum separation of LSFs.

• The conversion of the interpolated, quantized LSF values back to LP parameters is done

using the Matlab routine lsf2poly. This was found to give small differences with re-

spect to the reference code. The reference code first transforms the LSFs to the

cos()x ω= domain using linear interpolation into a table of cosine values. To compensate

for the approximations in this transformation, the Matlab code does the same transforma-

tion and then brings back the values (accurately) to the LSF domain, before converting

the LSF values with lsf2poly.

3.4 Formant Weighting Filter

As part of the process of forming a target signal, the highpass filtered speech is passed

through a formant perceptual weighting filter. This a pole-zero filter with coefficients changing

every subframe. The coefficients are taken from the unquantized LP parameters after bandwidth

expansion. The filter is implemented using the Matlab routine PZFilter in order to mimic the

operation of the reference code.

Let the unquantized LP parameters for a particular subframe be represented in terms of the

all-pole LP synthesis filter1/ ()A z . The formant weighting filter is

 1
1 2

2

()() , 0.9, 0.5.
()F

A zW z
A z

γ γ γ
γ

= = = (19)

The effect of this weighting filter is to deemphasize those regions of the spectrum in which

the LP spectrum has peaks and to emphasize those regions in between peaks. The idea is that the

peaks of the LP spectrum will tend to mask the noise at those frequencies, while the noise in the

valleys is more audible. An example of the weighting filter response is shown in Fig. 1.

An Implementation of ITU-T G.723.1 10

3.5 Open-Loop Pitch Estimation

The open loop pitch estimate finds the pitch lag and pitch gain values that minimize the

mean-square estimation error. The open-loop pitch is determined from the output of the perceptu-

ally weighted filter with the original signal as input. The prediction error is

 [] [] [].e n x n gx n L= − − (20)

The squared-error for a frame can be written as

 2[0,0] 2 [0,] [,],L R gR L g R L Lε = − + (21)

where the correlation terms are defined as

1

0
[,] [] [].

N

n
R i j x n i x n j

−

=
= − −∑ (22)

The open-loop pitch is determined for two subframes at a time. This means that the summa-

tion is over 120 samples. The optimum value of gain for a given lag is

 [0,] .
[,]opt

R Lg
R L L

= (23)

With this value of gain the squared error for a frame is

2[0,][0,0] .

[,]opt
R LR
R L L

ε = − (24)

0 1000 2000 3000 4000
−20

−10

0

10

20

Frequency Hz

A
m

pl
itu

de
 d

B
LP spectrum

Weighting Filter

Fig. 2 Formant weighting filter response.

An Implementation of ITU-T G.723.1 11

The best lag value L is chosen by maximizing the reduction in error as given by the second

term in the equation above,

2[0,]max .

[,]o
L

R LL
R L L

= (25)

The denominator of the second term can be computed recursively,

 2 2[1, 1] [,] [1] [1].R l l R l l x i x N i+ + = + − − − − − (26)

The search is done from small lags to large lags. Only lags with positive values of [0,]R L are

pitch candidates. Given a current lag candidate oL , a close-by lag giving a reduced squared error

becomes the next lag candidate, i.e., the new lag is chosen if

22

min
[0,][0,] , .

[,] [,]
o

o
o o

R LR L L L dL
R L L R L L

> − < (27)

However, if the search encounters a reduced squared error that is not close by the current

candidate, that new reduction in error must be substantially greater than that for the current can-

didate,

22

min
[0,][0,] , ,

[,] [,]
o

o
o o

R LR L A L L dL
R L L R L L

> − ≥ (28)

where A is 4/3. This additional check is done to try to avoid choosing pitch multiples.

3.6 Harmonic Noise Weighting

Another component of the overall perceptual filtering to form the target signal is a harmonic

noise-weighting (HNW) filter. This is a single tap FIR filter of the form

 [] [] [].y n x n gx n L= − − (29)

This is a gain reduced gain version of a pitch predictor.

The lag L is chosen by searching around the open-loop pitch value. The HNW is found for

every subframe even though the open-loop pitch values are for two subframes at a time. The

choice of lag is governed by the same equations as for the open-loop pitch search, but a separate

set of lags and coefficients is determined for each subframe. This means that the summation for

the determining the correlation values is over 60 samples.

An Implementation of ITU-T G.723.1 12

As a final check, the HNW filter is only used if the prediction gain is sufficiently high. The

prediction gain is the ratio of the input energy to the output energy,

2

[0,0]

1 .
[0,]1

[0,0] [,]

G
opt

RP

R L
R R L L

ε
=

=
−

 (30)

The prediction gain should be larger than a given minimum value,

min

2 min

min

1[0,] [0,0] [,].

G G

G

G

P P
PR L R R L L

P

>
−

>
 (31)

The gain is set to zero if the gain value is negative or the prediction gain condition

(min 1.6GP =) is not satisfied. In addition, the gain is limited to at most one. The HNW filter is

formed by reducing the gain so found by a multiplicative factor (10/32). This gives a filter that

deemphasizes the pitch harmonics and emphasizes the spectrum between pitch harmonics.

0 1000 2000 3000 4000
−10

−5

0

5

10

Frequency Hz

A
m

pl
itu

de
 d

B

Fig. 3 Harmonic noise weighting filter response (0.2, 40g L= =

(200 Hz))

An Implementation of ITU-T G.723.1 13

4 Analysis-by-Synthesis Target Signal

The concept in analysis-by-synthesis (AbS) is to generate outputs corresponding to different

choices of excitation signal parameters. Conceptually, a candidate excitation signal is passed

through the LP synthesis filter and compared to the input speech. The combination of parameters

that create the best reconstructed speech is chosen. A perceptually motivated weighting filter is

used to weight the error between the input signal and the reconstructed signal. The weighting fil-

ter is the formant-weighting filter in cascade with the harmonic noise-weighting filter.

With some manipulation of the block diagram, the weighting filter can be moved into the in-

put signal path and into the excitation signal path as shown in Fig. 5. This rearrangement has

computational advantages since the input signal only has to be filtered once for each subframe.

The input signal filtered by the weighting filter is termed the target signal.

The excitation signal has to be filtered many times in the AbS procedure. The output of the

excitation branch is the sum of two parts, a zero-state response and a zero-input response. The

zero-state response is the same for all candidate excitation signals for a particular subframe. As

such, it can be calculated once. For convenience, this zero-input response can be subtracted from

the target signal. The zero-state output of the excitation branch is then compared with the modi-

fied target signal. Furthermore, the composite filter in the excitation signal path can be repre-

sented by the overall impulse response of a weighted synthesis filter.

Fixed
Codebook

Adaptive
Codebook

1
()A z

LP
Synthesis Filter

Error
Weighting FilterInput Speech Weighted

Error
-

+

Reconstructed
Speech

Fig. 4 Analysis-by-Synthesis CELP coding.

An Implementation of ITU-T G.723.1 14

The excitation consists of two components. An adaptive codebook contribution that is in es-

sence is a segment of the past excitation. This supplies the pitch-like components by placing repe-

titions of past pitch pulses into the correct position in the excitation. The second excitation com-

ponent is the fixed codebook contribution. This supplies missing details in the excitation. The

search procedure for the best excitation is done sequentially. First an adaptive codebook contribu-

tion (pitch contribution) is determined assuming the fixed codebook contribution is zero. Then the

fixed codebook contribution is added.

The contribution to the reconstructed signal is determined by passing the excitation through

a weighted synthesis filter. This has an all-pole synthesis filter (as will be used in the decoder)

based on the quantized LP parameters, a formant weighting filter based on the unquantized LP

parameters, and a harmonic noise-weighting filter. Let the weighted synthesis filter have impulse

response []wh n . This is a causal infinite response, but we will only need the first N values of the

response, where N is the subframe length.

For convenience, a custom routine WSyn is used to implement the weighted synthesis filter

(it uses PZFilter internally). It has as input the filter state and the input signal, and has as out-

put the output signal and the updated state. The routine WSyn is used in three ways:

• Before processing a subframe, WSyn is used to calculate the impulse response (zero-state,

a unit impulse sequence as input; impulse response as output, discard the updated state).

• Before processing a subframe, WSyn is used to calculate the zero-input response to be

subtracted from the target signal (previous state, an all-zero sequence as input; zero-state

response as output, discard the updated state).

Fixed
Codebook

Adaptive
Codebook

1
()A z

Weighted LP
Synthesis Filter

Error
Weighting Filter

Input Speech Weighted
Error

-

+Error
Weighting Filter

Target Signal

Excitation

Fig. 5 Restructured Analysis-by-Synthesis CELP Coding

An Implementation of ITU-T G.723.1 15

• After generating the excitation for a subframe, WSyn is used to update the filter state

(previous state, excitation as input; discard the filter output, save the updated filter state).

An Implementation of ITU-T G.723.1 16

5 Subframe Level Processing

5.1 Adaptive Codebook

The adaptive codebook (ACB) supplies the pitch contribution to the excitation signal. The

pitch filter is a multi-tap IIR filter of the form

 [] [],
U

L

K

p k
k K

e n b e n k L
=

= − −∑ � (32)

where []e n� is a pitch repeated version of the past excitation,

[], 0,

[]
[mod(,)], 0.

e n n
e n

e n L L n
<⎧

= ⎨ − ≥⎩
� (33)

The past excitation contains both the ACB and fixed codebook contributions. The ACB generates

only the pitch-like contribution to the current excitation. The pitch repetition is necessary for

short pitch lags since the full excitation for the current subframe (0n ≥) has not been generated

yet. With the large subframe size used in G.723.1 (60 samples), this repetition is called into play

quite often. The pitch filter uses 5 taps, with the reference tap being in the middle (2LK = − and

2UK =). However, contrary to one’s expectations, the tabulated vectors of ACB coefficients do

not always have the largest coefficients near the middle of the filter.

The ACB coefficients are taken from one of two codebooks. The first has 85 entries; the

second has 170 entries. The first codebook is used for short pitch lags, while the second is used

for larger pitch lags. When the first codebook is used, the bit saved in using the shorter codebook

is reserved for use by the multipulse coding procedure. It is to be noted that the switch of code-

books depends on the lag chosen in the even-numbered subframes (0 and 2). Thus the codebook

used for subframes 0 and 1 depends on the lag chosen for subframe 0 and the codebook used for

subframes 1 and 2 depends on the lag chosen for subframe 1.

The adaptive codebook has two modes. In the even-numbered subframes (0 and 2), the lag is

sent as an absolute value. The search for lags in the even-numbered subframes is done in a limited

range (-1 to +1) around the open-loop lag determined earlier. This is done to reduce computa-

tions. In the odd-numbered subframes (1 and 3), the lag is coded relative to the previous sub-

frame. The lag offset is coded with 2 bits, allowing the lag for odd-numbered subframes to have

lags offset from –1 to +2 relative to the lag of the previous subframe.

An Implementation of ITU-T G.723.1 17

In vector-matrix notation, the pitch contribution to the excitation is

 ,p L=e E b� (34)

where pe is an 1N × vector of pitch contributions, LE� is an bN N× matrix of repeated excitation

signals, and b is an 1bN × vector of pitch coefficients,

[] []

, .
[1] [1]

L

U

KL U

L

L U K

be L K e L K

e N L K e N L K b

⎡ ⎤− − − −⎡ ⎤
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥− − − − − −⎣ ⎦ ⎣ ⎦

E b
� �"

� # % # #
� �"

 (35)

The contribution to the reconstructed signal is obtained by passing pe through the weighted

synthesis filter. One has to be careful here: we are interested in the zero-state response, so the past

excitation is implicitly zero. Filtering pe , we get

 ,p L=s S b (36)

where LS is an bN N× matrix formed by convolving the columns of LE� with the convolution

matrix containing the impulse response coefficients of the filter,

 1

1 2

0 0
0

.

o

o
L L

N N o

h
h h

h h h− −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

S E

"
" �

%
"

 (37)

In the Matlab code, this operation is carried out column-by-column using the Matlab filtering rou-

tine.

Recursive Computation

In the reference code, a recursive approach is used to reduce computations. Since the col-

umns of LE� are shifted versions of each other, a column ke� (columns numbered from LK to

UK) can be expressed as

 1

0 0 0 0 []
1 0 0 0 0

.0 1 0 0 0

0 0 1 0 0

k k

e L k

−

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

e e

�"
"

� �"
% # #

"

 (38)

An Implementation of ITU-T G.723.1 18

The filtered version of this column can be expressed as

1

[]
0

,0

0

k k

k

e L k

−

=
− −⎡ ⎤

⎢ ⎥
⎢ ⎥
⎢ ⎥= +
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

s He

HPe H

�
�

�
#

 (39)

where P is the shift matrix and H is the impulse response matrix. The shift matrix when used as

a premultiplier, shifts the elements of a column down; when used as a postmultiplier, it shifts

rows to the left. Since H is Toeplitz, these operations are the same and =HP PH . Then recur-

sive update to ks is

0

1
1

1

[] .k k

N

h
h

e L k

h

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= + − −
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

s Ps �
#

 (40)

Optimal Pitch Contribution

Give a target vector t , the squared error is

() ()

2

2 .

T
p p

T T T T
L L L

T T
Lts Lss

ε = − −

= − +

= − +

t s t s

t t t S b b S S b

t t R b b R b

 (41)

The cross-correlation matrix LtsR is 1 bN× ; the correlation matrix LssR is b bN N× . The search

for the best ACB is over lags and over coefficient vectors. The lag search range is limited as de-

scribed earlier. For a given lag, the search for the best coefficient vectors amounts to maximizing

the sum of the last two terms in the previous expression,

 max(2).T
opt Lts Lss= −

b
b R b b R b (42)

This is the formulation used in the Matlab routine.

An Implementation of ITU-T G.723.1 19

The figure below shows an example of the action of the adaptive codebook. In this case, the

two almost equal coefficients in the coefficient vector serve to interpolate between integer lag

values.

Streamlined Comparison

In the reference code, a streamlined version of this computation is used. The quadratic form
T

Lssb R b is symmetric and so nearly half of the computations can be avoided,

1

2

[,]

[,] 2 [,].

U U

L L

U U

L L L

K K
T

Lss k m Lss
k K m K

K K k

k Lss k m Lss
k K k K m K

b b R k m

b R k k b b R k m

= =

−

= = =

=

= +

∑ ∑

∑ ∑ ∑

b R b

 (43)

The product terms k mb b can be pre-computed.

The final step in the streamlining is to make two vectors of the components in the computa-

tion; one with correlation terms and one with coefficient terms. The correlation terms are the bN

cross-correlations LtsR , the bN diagonal terms [,]LssR k k , and the (1) / 2b bN N − off-diagonal

terms of [,]LssR k m . The coefficient terms are the bN coefficient 2b , the bN diagonal terms

2
kb− , and the (1) / 2b bN N − off-diagonal terms 2 k mb b− . The test for the best vector of coeffi-

cients is then the dot product of the vector of correlation terms and the pre-computed vector of

coefficient terms.

−120 −90 −60 −30 0 30 60

−0.1

−0.05

0

0.05

0.1

SubframePast Excitation

L

Fig. 6 Adaptive codebook contribution, 90L = , [0.06 0.17 0.63 0.59 0.17]= − −b .

An Implementation of ITU-T G.723.1 20

Target Signal Update

After determining the ACB contribution, this contribution is subtracted from the target sig-

nal to give a modified target signal that will be the target for the multipulse search,

 .L opt′ = −t t HE b� (44)

Pitch Taming Procedure

The adaptive codebook search uses some “taming” procedures that in some still obscure

ways are meant to help reduce distortion in the case of frame loss. The adaptive codebook gain

values are ordered from small to large. The range of ACB gain indices to be searched is limited

by the “taming” procedure to include only the small gain values. The taming procedure uses the

sine detector described earlier. Since the taming has no effect during normal speech, the efficacy

and correctness of this process is still in question.

5.2 Multipulse Coding

The multipulse excitation uses 6 pulses per subframe in subframes 0 and 2 and 5 pulses per

subframe in subframes 1 and 3. All the pulses for a subframe must be placed on one of two grids:

even-numbered positions or odd-numbered positions. One bit is used to specify which of the grids

should be used. There are then 30 pulse positions in which to place either 6 or 5 pulses. The

pulses for a subframe all have the same amplitude (one of 24 quantized values), but the signs are

specified separately with 6 or 5 bits per subframe.

Pitch Repetition

For short pitch lags, the multipulse excitation is subject to a pitch repetition. A single bit is

used to determine whether to use this pitch repetition or not. The option to use pitch repetition is

available for subframes 0 and 1 whenever the pitch lag for subframe 0 is less than 58. The option

to use pitch repetition is available for subframes 2 and 3 whenever the pitch lag for subframe 2 is

less than 58. The bit to signal whether to use pitch repetition is available for short pitch lags be-

cause for these short pitch lags, the ACB gain table is smaller by a factor of 2 compared to longer

pitch lags.

The multipulse repetition can be achieved in one of two ways: by repeating the pulses or by

repeating the impulse response. During the multipulse search, the second method is used. During

speech synthesis, the first method is used. The pitch repeated impulse response is given by

An Implementation of ITU-T G.723.1 21

 []
0

[] , 0 1,
uK

k
h n h n kL n N

=
= + ≤ ≤ −∑� (45)

where the upper limit is (1) /uK N L= −⎢ ⎥⎣ ⎦ .

Pulse Positions and Amplitudes

The search for the pulse positions and amplitudes is done in nested loops. The outermost

loop tests whether to use pitch repetition or not. The next loop is over the two possible grids. The

next loop is a search over pulse amplitudes. The innermost loop, generates finds the pulse loca-

tions sequentially.

The formalism for choosing the next best pulse position can be formulated as follows. Let

the target vector be []t n (after being compensated for by the adaptive codebook contribution) and

the impulse response of the weighted synthesis filter be []h n (actual impulse response or the

pitch repeated impulse response). If we place a pulse of amplitude mg in position m , the error is

 2[] 2 [] [0,0],t m th m hhE m E g R m g R= − + (46)

where

1

0
1

[] [] []

[] [],

N

th
n
N

n m

R m t n h n m

t n h n m

−

=
−

=

= −

= −

∑

∑
 (47)

and

1

0
1

[] [] []

[] [].

N

th
n
N

n m

R m h n h n m

h n h n m

−

=
−

=

= −

= −

∑

∑
 (48)

The optimum value of gain can be found as

 [] .
[0,0]

th
opt

hh

R mg
R

= (49)

We will choose mg from a fixed set of quantized amplitudes, but allowing mg to take on ei-

ther sign. To reduce complexity, we use a quantized estimate of the gain and search over quan-

An Implementation of ITU-T G.723.1 22

tized gain amplitudes nearby the estimated gain. If the gain which minimizes Eq. (46) is denotes

as optg , the error in using another value of gain can be expressed as

 2
min[] [] () [0].m opt hhE m E m g g R= + − (50)

The quantized gain that minimizes the mean-square error is that value which is closest to optg .

Estimating the Pulse Amplitude

The pulse position that gives the biggest reduction in squared error is found as

()

2

2

max(2 [] [0,0])

[]max
[0,0]

max [] .

opt opt th opt hh
m

th
m hh

rh
m

m g R m g R

R m
R

R m

= −

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
=

 (51)

Once the best position is found, optg for that pulse is given by Eq. (49). The quantized value of

gain ˆmg nearest optg is found. If the table of quantized amplitudes has elements []gA i , the index

of the quantized amplitude is found as

()
()

min | | ()

min () [0,0] [] .

g opt gi

g hh thi

i g A i

A i R R m

= −

= −
 (52)

The search for the gain that is used for all of the pulses is limited to quantized gain values near

[]gA i (relative indices -2 to +1).

Now we can loop over the reduced set of quantized gain amplitudes. The same amplitude

will be used for all pulses in a subframe.

Pulse Positions

Given the trial quantized gain, the error for a trial position is (from Eq. (46)),

 2[] 2 () [] () [0,0],t g th g hhE m E A i R m A i R= +∓ (53)

where the upper sign is used if the pulse is positive and the lower sign is used if the pulse is nega-

tive. The position that gives the lowest squared error is

An Implementation of ITU-T G.723.1 23

 ()max [] .th
m

M R m= (54)

The sign of the pulse is determined by the sign of []thR M ,

 sign([]) ().M th gg R M A i= (55)

Once a pulse position and pulse gain has been found, the effect of that pulse can be sub-

tracted from the target signal,

[] [] []* []

[] [].
M

M

t n t n g n M h n
t n g h n M

δ′ = − −
= − −

 (56)

Using this expression, the cross-correlation can be updated,

1

1

[] [] []

[] [] []

[] [].

N

t h
n m

N

th M
n m

th M hh

R n t n h n m

R n g h n m h n M

R n g R n M

−

′
=

−

=

′= −

= − − −

= − −

∑

∑ (57)

With the updated cross-correlation, the next pulse can be placed. As each pulse is placed, the po-

sition it occupies is marked as occupied to prevent a subsequent pulse being placed in the same

position.

Coding the Pulse Positions

The pulse positions are coded using the combinatorial coding procedure described in

Appendix B. The procedure generates a code for each subframe. The codes take on

()30 5937756 = values for even subframes and ()30 1425066 = values for odd subframes. The

minimum number of bits required to code the pulse positions is 73 bits. This is accomplished by

splitting the coding as follows.

• Express the code for a subframe as i i i iC p M q= + , where /i i ip C M= ⎢ ⎥⎣ ⎦ and

mod(,)i i iq C M= . The modulus value is 162 for even subframes and 142 for odd sub-

frames.

• The iq values are coded with 16 or 14 bits.

An Implementation of ITU-T G.723.1 24

• The excess values are coded as 3 2 1 09 90 810xC p p p p= + + + . This value can be repre-

sented with 13 bits.

Differences from the Reference Code

The multipulse coding differs in small details from the reference code. As an example, if

several pulse positions are equally good, the reference code uses the last of the equally good posi-

tions. The Matlab implementation uses a max operation that returns the first of the equally good

positions. Reversing the order of the grid positions during the search has reduced the differences

with respect to the reference code.

The combinatorial coding procedure used in the Matlab code differs from that in the refer-

ence code. In the terms of the analysis of Appendix B, the reference code generates a code that

marks the positions of non-pulses. The Matlab code uses the more efficient process of coding po-

sitions of the pulses and then “reverses” the code to the give exactly the same result as the refer-

ence code.

An Implementation of ITU-T G.723.1 25

6 Decoder

The decoder is shown in Fig. 7. The decoder does no searching, so is computationally much

less onerous than the coder. The steps involved in generating the reconstructed speech are as fol-

lows.

• Generate the quantized LP parameters for each subframe.

o Decode the quantized LSF values.

o Correct for improperly ordered or closely spaced LSF values.

o Interpolate the quantized LSF values from the quantized LSF values from the last

frame to create a vector of quantized LSF values for each subframe.

o Convert the LSF values to the corresponding LP coefficient values.

• Decode ACB and multipulse parameters.

• Generate the excitation for each subframe.

o Generate the ACB contribution to the excitation.

o Generate the multipulse contribution to the excitation.

o Filter the total excitation with the LP synthesis filter.

Notes

The combined excitation signal is saved for use in future subframes. The excitation signal

that is saved is clipped. The clipping level is just below full scale (1 for the Matlab version and

32768 for the reference code). The output signal, however, is created from the unclipped excita-

tion.

Fixed
Codebook

Adaptive
Codebook

1
()A z

LP
Synthesis Filter

Reconstructed
Speech

Fig. 7 Decoder

An Implementation of ITU-T G.723.1 26

 References

1. ITU-T Recommendation G.723.1, Dual Rate Speech Coder for Multimedia Communications
Transmitting at 5.3 and 6.3 kbit/s, March 1996.

2. P. Kabal, “Ill-Conditioning and Bandwidth Expansion in Linear Prediction of Speech”, Proc.
IEEE Int. Conf. Acoustics, Speech, Signal Processing (Hong Kong), pp. I-824–I-827, April
2003.
See also P. Kabal, “Ill-Conditioning and Bandwidth Expansion in Linear Prediction of
Speech”, Technical Report, Electrical & Computer Engineering, McGill University, Feb.
2003: http://WWW.TSP.ECE.McGill.CA/Documents.

3. J. P. M. Schalkwijk, “An Algorithm for Source Coding”, IEEE Trans. Inform. Theory, vol. 18,
pp. 395–399, May 1972.

An Implementation of ITU-T G.723.1 27

Appendix A Sine Detector

Consider samples from a discrete-time sine wave. This signal has a spectrum with two poles

on the unit circle,

 1 2
1() .

1 2cos o
S z

z zω − −=
− +

 (58)

The optimal prediction error filter will generate zeros to cancel the poles,

 1 2() 1 2cos .oH z z zω − −= − + (59)

The corresponding predictor has coefficients 2cos oω and -1.

This analysis shows that a 2-tap predictor can exactly predict the next value of a sine from

the previous two samples. This can be written as

 [] 2cos [1] [2],os n s n s nω= − − − (60)

where [] cos()os n nω φ= + and can be verified using standard trigonometric identities. Note that

for an optimal predictor, the last coefficient is equal to the negative of the last reflection coeffi-

cient. Thus a second reflection coefficient of 1 indicates a sine wave.

In a speech coder, the windowing of the signal will mean that the calculated correlations are

not exactly that for a sine wave and the predictor coefficients are not exactly those needed to pre-

dict a sine. However, for reasonable size frames, the second reflection coefficient will be near

unity and hence this value can be used to detect the presence of a sine.

An Implementation of ITU-T G.723.1 28

Appendix B Combinatorial Coding

The problem under consideration is how to code the pulse positions. Combinatorial coding

assigns a code for each combination of pulse positions. The procedure for doing this coding has

been reinvented many times, possibly described first in the engineering literature in [3].

K pulses are placed in N possible positions. Let the pulse positions be ordered and let the

positions be numbered from 1 to N . The minimum number of bits for coding the positions of

randomly placed pulses can be determined from a combinatorial argument. The total number of

different combinations of K pulses in N positions is ()N
K . If each possibility is equally likely,

the coding requires at least

 ()min 2log NN K= (61)

bits. This is the lower bound on the number of bits required to code unconstrained random pulse

positions. Direct coding of the pulse positions is much more expensive, requiring 2logK N bits.

For G.723.1, the number of positions is 30 and the number of pulses is either 6 (even subframes)

or 5 (odd subframes). For the even subframes, minN is 19.2 bits, while direct coding would re-

quire 29.4 bits.

The pulse positions for a block can be coded by directly tabulating the ()N
K possible combi-

nations of pulse positions. Consider a binary N -vector of weight K . Ones mark the positions of

the pulses, while zeros mark the empty positions. Index the vectors from 0 to () 1N
K − , with the

vectors arranged in lexicographic order. For this purpose, number the data positions from 1N −

for the most significant position to 0 for the least significant position.

The following algorithm can be used to determine the index for a given data vector. The vec-

tor is searched from the most significant (lexicographic) position to the least significant position,

n running from 1N − to 0. Whenever a one is encountered in position n , the index is increased

by ()1n
m
− where m is the number of ones yet to be found. The resulting value is the index to the

lexicographic ordering. The complementary problem of determining a data vector containing

An Implementation of ITU-T G.723.1 29

pulse positions can be solved by comparing the index value with the same combinatorial values to

determine if a one or zero should be placed in a given position.

The pulse coding problem may be viewed as finding a path through the trellis shown in Fig.

8. Moving diagonally downward in the trellis decreases the number of pulses remaining. Moving

across in the trellis decreases the number of positions remaining. Each node in the trellis is la-

belled with a combinatorial term. If a pulse (a one) is encountered, the value at the node is added

to the index and the downward diagonal path is taken. Now solve the sub-problem with one fewer

position and one fewer pulse. If no pulse (a zero) is encountered, the index remains unchanged

and a horizontal path is taken. Now solve the sub-problem with one fewer position.

At a given horizontal level in the trellis, the values on the nodes decrease in moving to the

right,

 () () for 1.n n k km m
−> ≥ (62)

The index determined as described will reflect a strict lexicographic ordering—moving a pulse

from a more significant position to a less significant position can only decrease the index value.

Furthermore, the index value corresponding to a pulse configuration is unique.

The largest index value results when the leftmost diagonals in the trellis are traversed,

()

()
max

1
1

1.

K

k

N ki K k

N
K

=

−= − +

= −

∑
 (63)

()1N
K
−

()2
1

N
K

−
−

()3
3

N
K

−
−

()0
1

()1
2

()2N
K
− ()3N

K
−

()3
2 ()2

2

()2
1 ()1

1()3
1

Fig. 8 Combinatorial coding trellis.

An Implementation of ITU-T G.723.1 30

The smallest index value results when the rightmost diagonals are traversed,

 min 0.i = (64)

Therefore, the index determined by the algorithm takes on all ()N
K integer values.

The decoding problem can also be viewed as traversing the trellis. This time the index value

is compared to the value at the node. If it is as large, a pulse is placed in that position. The justifi-

cation for this comes from Eq. (63)

The contribution to the index value of all subsequent pulses is strictly less than that for a

single pulse at the position under consideration. If a pulse is placed at that position, the index

value is then decreased by the value at that node and the algorithm can be repeated on a sub-

problem with one less position and one less pulse. The total number of comparisons to be made is

1n − .

The combinatorial terms on the nodes of the trellis can be stored as a table of values. If the

table size is considered excessive, these terms can be computed recursively using a single multi-

ply and divide. This is possible since ()n
m , is followed by either ()1

n
m − or ()1

1
n
m

−
− on a path

through the trellis. A strategy that falls between a full table and full computation stores the com-

binatorial terms for the top row of nodes. When the path traversed descends from the top row, the

values for the next row of nodes can be determined from () () ()1 1 ,1
n n n
m m m

− −= −− avoiding multi-

plications and divisions.

This coding procedure requires K additions and K references to combinatorial terms. The

decoding requires N references to the combinatorial terms, but still only K additions. The com-

binatorial terms can be stored in a table of less than K N values. Alternately several algorithms

are available to generate the required terms recursively.

