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1 Introduction

These notes examine the relationships between frequency domain representations of discrete-time
and wrapped signals derived from a continuous-time signal. The first part of these notes develops
the relationships for periodic signals which allow for the analysis of periodic signals within the
framework of the Fourier transform.

The second part examines the relationships between the Fourier series, the Discrete-Time
Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT).

Throughout this document, round brackets are used for functions of continuous variables (ex-
amples: v(t) and V(ω)); square brackets are used for functions of discrete variables (example:
v[n]). In the first part of this document, the equations shown within boxes are results that are
used in the developments leading to formulations for the Fourier transform of periodic signals. In
the second part of this document, the equations shown within boxes are results which appear on
the diagram relating the Fourier domain representations of sampled and wrapped signals.

2 Continuous-Time Fourier Transform

The Fourier transform of a continuous-time signal is given by

V(F) =
∫ ∞

−∞
v(t)e−j2πFt dt. (1)

This is well-defined (converges) if v(t) satisfies the Dirichlet conditions (absolute integrability,
finite number of finite discontinuities in a finite time interval, finite number of extrema in a finite
interval). The inverse transform is

v(t) =
∫ ∞

−∞
V(F)ej2πFt dF. (2)

Other functions which do not satisfy the Dirichlet conditions are admissible if we allow the use of
delta functions.

2.1 Dirac Delta Function

The Dirac delta (impulse function) can be defined in terms of its properties [1]

δ(t) = 0 for t 6= 0,
∫ ∞

−∞
δ(t) dt = 1.

(3)
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The delta function (more properly a distribution) is zero everywhere except at the origin, yet has
unit area. The sampling property of the delta function is

∫

t∈TA

v(t)δ(t) dt =





v(0) 0 ∈ TA

0 0 /∈ TA.
(4)

Using the sampling property of the delta function, the Fourier transform of the delta function
evaluates to a constant ∫ ∞

−∞
δ(t)e−j2πFt dt = 1. (5)

The inverse transform gives us ∫ ∞

−∞
ej2πFt dF = δ(t). (6)

This integral must be evaluated using the Cauchy principal value, i.e. as the limit

lim
T→∞

∫ T/2

−T/2
ej2πFt dF. (7)

Note that since δ(t) is a symmetric function, the exponent in the integral can have either sign.
The inverse transform giving a delta function gives us a relation for the integral of a complex

exponential. Here we reiterate the result using symbols which do not evoke time or frequency,

∫ ∞

−∞
e±j2πux du = δ(x). (8)

2.2 Fourier Series – Continuous-Time Signals

A periodic function (subject to conditions of absolutely integrability over a period, a finite number
of finite discontinuities in a finite interval, and a finite number of extrema in a finite interval) has
a Fourier series expansion in complex exponentials [2]. Consider a periodic function ṽ(t) with
period T. The Fourier series expansion for ṽ(t) is

ṽ(t) =
∞

∑
m=−∞

vmej2πmt/T. (9)

The Fourier series coefficients are found from

vm =
1
T

∫ T/2

−T/2
ṽ(t)e−j2πmt/T dt. (10)
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2.3 Fourier Transform of a Continuous-Time Periodic Signal

We can now plunge ahead and express the Fourier transform of ṽ(t) in terms of the Fourier series
coefficients,

Vp(F) =
∫ ∞

−∞
ṽ(t)e−j2πFt dt

=
∞

∑
m=−∞

vm

∫ ∞

−∞
e−j2πt(F−m/T) dt

=
∞

∑
m=−∞

vmδ
(

F− m
T

)
.

(11)

We have used Eq. (8) to evaluate the integral of the complex exponential. Summarizing, the
Fourier transform of a periodic function is a sequence of delta functions in the frequency domain
(at the harmonics of the periodic signal repetition rate). The areas of the delta functions are given
by the Fourier series coefficients,

Vp(F) =
∞

∑
m=−∞

vmδ
(

F− m
T

)
. (12)

2.4 Fourier Transform of a Periodic Impulse Train

Consider the periodic impulse train (period T),

ṽ(t) =
∞

∑
k=−∞

δ(t− kT). (13)

The Fourier series coefficients for this signal are given by

vm =
1
T

∫ T/2

−T/2

∞

∑
k=−∞

δ
(

t− k
T

)
ej2πmt/T dt. (14)

We see that the only delta function within the integration range is the one for k = 0. Using the
sampling property of the delta function, the integral evaluates to unity. Then the Fourier series
coefficients are constant (vm = 1/T) and the Fourier transform of the impulse train is

Vp(F) =
1
T

∞

∑
m=−∞

δ
(

F− m
T

)
. (15)

Periodic functions have delta functions in their Fourier transforms and delta functions have peri-
odic functions in their Fourier transforms. Because of the duality between the forward and inverse
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Fourier transforms (if v(t) ⇐⇒ V(F), then V(t) ⇐⇒ v(−F)), this gives us the result that an im-
pulse train (periodic and delta functions) must have as its Fourier transform another impulse train
(delta functions and periodic).

We have an alternate formulation for the Fourier transform (or inverse Fourier transform) of
an impulse train. The Fourier transform for a delayed delta function δ(t− kT) is e−j2πkTF. Then
the Fourier transform pair is

∞

∑
k=−∞

δ(t− kT) ⇐⇒
∞

∑
k=−∞

e−j2πkTF. (16)

An finally using the time-frequency duality of the Fourier transform, we get

∞

∑
k=−∞

δ(t− kT) =
1
T

∞

∑
m=−∞

ej2πmt/T ⇐⇒
∞

∑
k=−∞

e−j2πkFT =
1
T

∞

∑
m=−∞

δ
(

F− m
T

)
. (17)

2.5 Periodic Wrapped Continuous-Time Signals

Consider forming a periodic signal ṽ(t) from a (non-periodic) signal v(t) as follows

ṽ(t) = v(t) ∗
∞

∑
k=−∞

δ(t− kT) =
∞

∑
k=−∞

v(t− kT). (18)

We refer to this process which forms a time-aliased periodic signal as wrapping.1 Using the fact that
a convolution in the time-domain corresponds to a product in the frequency domain, the Fourier
transform of ṽ(t) is

∞

∑
k=−∞

v(t− kT) ⇐⇒ V(F)
1
T

∞

∑
m=−∞

δ
(

F− m
T

)
=

1
T

∞

∑
m=−∞

V
(m

T

)
δ
(

F− m
T

)
. (19)

This shows that the Fourier series coefficients are just V(F)/T evaluated at the harmonic frequen-
cies.

Going back to the Fourier series expansion, we can form a periodic signal ṽ(t) from a signal
v(t) which is equal to one period of ṽ(t). Then the definition of the Fourier series coefficient in
Eq. (10) can be written as

vm =
1
T

V
(m

T

)
, (20)

where V(F) is the Fourier transform of one period of ṽ(t).

1The continuous-time signal can be considered to be wrapped onto a circle of circumference T, which all the super-
imposed intervals being added.
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Given a signal v(t) which is wrapped to become ṽ(t), there are two ways to get the coefficients
of the frequency response. The first is to take the Fourier transform of v(t) (which can be longer
than T) and then sample the frequency response at F = m/T. The second is to take the Fourier
transform of one period of ṽ(t) and then sample the frequency response at F = m/T.

2.5.1 Poisson Sum Formula

From Eq. (19), one can take the term-by-term inverse Fourier transform of the extreme righthand
side expression and equate it to the lefthand side. This gives the Poisson sum formula,

∞

∑
k=−∞

v(t− kT) =
1
T

∞

∑
m=−∞

V
(m

T

)
ej2πtm/T. (21)

3 Discrete-Time Fourier Transform

The discrete-time Fourier transform (DTFT) is given by

V(ω) =
∞

∑
n=−∞

v[n]e−jωn. (22)

This sum converges if v[n] is absolutely summable. The frequency response is periodic, with
period 2π. This sum can be considered to be a Fourier series expansion of the periodic signal
V(ω). The inverse discrete-time Fourier transform is really the computation of the Fourier series
coefficients,

v[n] =
1

2π

∫ π

−π
V(ω)ejωn dω. (23)

3.1 Fourier Transform of a Discrete-Time Periodic Signal

Let ṽ[n] be periodic with period N,
ṽ[n + N] = ṽ[n]. (24)
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Let us evaluate the Fourier transform of this signal.

Vpω) =
∞

∑
n=−∞

ṽ[n]e−jωn

=
∞

∑
p=−∞

N−1

∑
q=0

ṽ[pN + q]e−jω(pN+q)

=
∞

∑
p=−∞

e−jωpN
N−1

∑
q=0

ṽ[q]e−jωq.

(25)

The second line of this equation is as a result of substituting n = pN + q. The third line results
from exploiting the periodicity of ṽ[n]. The second factor of the result above is the DTFT of one
period of ṽ[n]. In the last line, the first factor (sum of complex exponentials) can be expressed in
terms of an impulse train. The form of the sum is a little different than that encountered earlier.
Appendix A recasts the earlier results in terms of radian frequency. Then from Eq. (57) with T = N,

∞

∑
p=−∞

e−jωpN =
2π

N

∞

∑
k=−∞

δ
(

ω− 2πk
N

)
. (26)

Finally we can write

V(ω) = 2π
∞

∑
k=−∞

Vkδ
(

ω− 2πk
N

)
, (27)

where

Vk =
1
N

N−1

∑
n=0

ṽ[n]e−j2πnk/N . (28)

The coefficients Vk are periodic with period N. They are obtained as the DTFT of one period of
ṽ[n], evaluated at ω = 2πk/N. As we will see later, these coefficients are the same as the discrete
Fourier transform, except for a scale factor.
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3.2 Fourier Series – Discrete-Time Signals

The Fourier series expansion for a discrete time signal can be obtained by taking the inverse trans-
form of Eq. (27),

ṽ[n] =
1

2π

∫ π

−π
V(ω)ejωn dω

=
∞

∑
k=−∞

Vk

∫ 2π−ε

−ε
δ
(

ω− 2πk
N

)
ejωn dω

=
N−1

∑
k=0

Vkej2πkn/N .

(29)

In the second line, the limits of the integration have been shifted so that the delta functions for
k = 0 to k = N − 1 fall within the limits. This is possible because the integrand is periodic with
period 2π. The result is a Fourier series expansion with Fourier series coefficients Vk,

ṽ[n] =
N−1

∑
k=0

Vkej2πkn/N . (30)

3.3 Fourier Transform of a Discrete-Time Pulse Train

Consider the pulse train

ṽ[n] =
∞

∑
k=−∞

δ[n− kN]. (31)

Here the delta function with square brackets is the unit pulse, equal to one if its argument is zero,
and equal to zero otherwise. The Fourier series coefficients for this signal are constants at 1/N,
giving the Fourier series representation,

∞

∑
k=−∞

δ[n− kN] =
1
N

N−1

∑
k=0

ej2πnk/N . (32)

The DTFT of this pulse train can be found term-by-term for the left-hand side of the equation
above,

Vp(ω) =
∞

∑
k=−∞

e−jωkN . (33)
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We can find a impulse train representation for this expression from Eq. (57) in Appendix A. This
gives the following representations of a discrete-time pulse train.

∞

∑
k=−∞

δ[n− kN] =
1
N

N−1

∑
m=0

ej2πnm/N ⇐⇒
∞

∑
k=−∞

e−jωkN =
2π

N

∞

∑
m=−∞

δ
(

ω− 2πm
N

)
. (34)

This expression has discrete-time pulses on the left and delta functions on the right.

3.4 Periodic Wrapped Discrete-Time Signals

Consider forming a periodic signal ṽ[n] from v[n],

ṽ[n] = v[n] ∗
∞

∑
k=−∞

δ[n− kN] =
∞

∑
k=−∞

v[n− kN]. (35)

Using the fact that a convolution in the time-domain corresponds to a product in the frequency
domain, the DTFT of ṽ[n] is

∞

∑
k=−∞

v[n− kN] ⇐⇒ V(ω)
2π

N

∞

∑
m=−∞

δ
(

ω− 2πm
N

)
=

2π

N

∞

∑
m=−∞

V
(2πm

N

)
δ
(

ω− 2πm
N

)
. (36)

Given a signal v[n] which is wrapped to become ṽ[n], there are two ways to get the coefficients
of the frequency response. The first is to take the Fourier transform of v[n] and then sample the
frequency response at ω = 2πm/N. The second is to take the Fourier transform of one period of
ṽ[n] and then sample the frequency response at ω = 2πm/N.

3.5 Poisson Sum Formula

For discrete-time signals we can find a result similar to the Poisson sum formula for continuous-
time signals. In this case, taking the term-by-term inverse Fourier transform of the extreme right-
hand side of the equation above,

∞

∑
k=−∞

v[n− kN] =
1
N

∞

∑
m=−∞

V
(2πm

N

)
ej2πnm/N . (37)
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4 Discrete Fourier Transform

The discrete Fourier transform (DFT) for a finite length sequence x[n] is [3]

V[k] =
N−1

∑
n=0

v[n]e−j2πnk. (38)

The DFT coefficients V[k] are periodic with period N. The inverse discrete Fourier transform is

v[n] =
1
N

N−1

∑
k=0

V[k]ej2πnk. (39)

In this equation, v[n] becomes periodic with period N. With this view, we see that the DFT formula
Eq. (38) can be considered to operate on a finite length signal, or alternately, can be considered to
operate on one period of a periodic signal. In the latter interpretation, the DFT formula essentially
calculates the Fourier series coefficients of the periodic signal.

The DFT formula differs from the Fourier series formula in Eq. (29) only in scale factor. The
Fourier series coefficient Vk is related to the DFT coefficient as

V[k] = NVk. (40)

5 Relationships Between the Frequency-Domain Representations

The previous results put us in a good position to examine the relationships between the frequency
representations of continuous-time signals, sampled signals, and periodic signals. Figure 1 shows
a schematic form of the relationships. Consider the time-domain signals shown in that figure. On
the left side of the diagram, the signal x[n] is formed by sampling x(t) with sampling interval T.
The signal x̃[n] is formed by wrapping x[n] with period N. On the right side of the diagram, the
signal x̃(t) is formed by wrapping x(t) with period NT. Sampling x̃(t) with period T closes the
loop and gives us x̃[n]. Thus sampling then wrapping (on the left side) is the same as wrapping
and then sampling (on the right side – with the proviso that wrapping period is N times the
sampling interval T).
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Fig. 1: Relationships between the frequency domain representations of continuous-time signals,
sampled signals, and periodic signals. FT is the (continuous-time) Fourier transform, DTFT is the
discrete-time Fourier transform, FS is the Fourier series, and DFT is the discrete Fourier transform.



Notes: Frequency Domain Representations of Sampled and Wrapped Signals 11

5.1 Sampling a Continuous-Time Signal: x(t) → x[n]

We can model the sampling of a continuous-time signal as the multiplication of the continuous-
time signal by a impulse train. The areas of the resulting impulses are the sample values,

x(t)
∞

∑
k=−∞

δ(t− kT) =
∞

∑
k=−∞

x(kT)δ(t− kT). (41)

The Fourier transform can be computed using the relationship that a product in the time domain
corresponds to a convolution in the frequency domain.

∞

∑
k=−∞

x(kT)δ(t− kT) ⇐⇒ X(F) ∗ 1
T

∞

∑
m=−∞

δ
(

F− m
T

)
=

1
T

∞

∑
m=−∞

Xc

(
F− m

T

)
. (42)

This frequency response is periodic with period 1/T.
In discrete-time,

x[n] = x(nT). (43)

The DTFT of x[n] is X(ω) which is periodic with period 2π. The mapping between F for the
continuous-time Fourier transform and ω for the discrete-time Fourier transform is ω = 2πFT.
With this mapping, when F increases by 1/T, ω increases by 2π. Then the DTFT can be equated
to the frequency response of the sampled sequence,

X(ω) =
1
T

∞

∑
m=−∞

Xc

(ω− 2πm
2πT

)
. (44)

As pointed out earlier, the x[n] ⇐⇒ X(ω) relationship is that of Fourier series coefficients x[n]
corresponding to a periodic signal X(ω).

5.2 Wrapping a Continuous-Time Signal: x(t) → x̃(t)

The frequency-domain consequences of wrapping a continuous-time signal have been explored
in Section 2.5. That result is reproduced here with the appropriate change of variables,

∞

∑
k=−∞

x(t− kNT) ⇐⇒ 1
NT

∞

∑
m=−∞

Xc

( m
NT

)
δ
(

F− m
NT

)
. (45)
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In the diagram, the frequency domain representation of the wrapped sequence is given in terms
of its continuous-time Fourier series coefficients,

xm =
1

NT
Xc

( m
NT

)
. (46)

5.3 Wrapping a Discrete-Time Signal: x[n] → x̃[n]

The frequency-domain consequences of wrapping a discrete-time signal have been explored in
Section 3.4. That result is reproduced here with the appropriate change of variables,

∞

∑
k=−∞

x[n− kN] ⇐⇒ 2π

N

∞

∑
m=−∞

X
(2πm

N

)
δ
(

ω− 2πm
N

)
. (47)

The discrete-time Fourier series coefficients for x̃[n] are

Xm =
1
N

X
(2πm

N

)
. (48)

We can substitute for X(ω) from Eq. (44) to get an expression for the Fourier series coefficients
directly in terms of wrapped samples of the continuous-time Fourier transform Xc(F),

Xk =
1

NT

∞

∑
m=−∞

Xc

( k−mN
NT

)
. (49)

In the figure, the corresponding relationship is expressed in terms of the discrete Fourier trans-
form coefficients (X[k] = NXk),

X[k] = X
(2πk

N

)
. (50)

These coefficients are the DFT for one period of x̃[n].

5.4 Sampling a Continuous-Time Periodic Signal: x̃(t) → x̃[n]

The periodic signal x̃(t) is represented by its Fourier series coefficients xm in Eq. (46). The periodic
discrete-time signal x̃[n] is likewise represented by its Fourier series coefficients Xm in Eq. (49).
The relationship between these is

Xk =
∞

∑
m=−∞

xk−mN . (51)
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Finally, the DFT coefficients expressed in terms of the Fourier series coefficients of x̃(t) are given
by

X[k] = N
∞

∑
m=−∞

xk−mN . (52)

5.5 Comments on the Frequency Domain Relationships

The diagram showing the frequency domain relationships shows that sampling in one domain
corresponds to wrapping in the other domain. The diagram shows directed arrows for the sam-
pling and wrapping operations. Under some circumstances, one can “reverse” the operation. For
instance, sampling is reversible if a time signal is appropriately bandlimited. Similarly, wrapping
a time signal is reversible if the signal is time limited to less than the wrapping period. However
to reach the DFT from the Fourier transform involves both sampling and wrapping. The combi-
nation is not reversible since a signal cannot be simultaneously bandlimited and time limited.

6 Summary

These notes has shown that the Fourier transform can be applied to periodic continuous-time or
discrete-time signals. This allows for a unified analysis of signals containing both non-periodic
and periodic components. The second part of these notes have examined the frequency domain
relationships for signals derived by sampling and/or wrapping a continuous-time signal.

Appendix A Continuous-Time Results Expressed in Radian Measure

In this appendix, we restate the results derived earlier for continuous-time signals using radian
frequency. Using radian frequency (Ω), the Fourier transform is

V(Ω) =
∫ ∞

−∞
v(t)e−jΩt dt. (53)

The inverse transform is
v(t) =

1
2π

∫ ∞

−∞
V(Ω)ejΩt dΩ. (54)

The integral representation for a delta function in Eq. (8) has a 2π factor in the exponent.
Absorbing this factor into the variable u, a modified integral representation is

∫ ∞

−∞
e±jux du = 2πδ(x). (55)
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Using this result, the Fourier transform of a periodic sequence expressed in terms of Ω is

Vp(Ω) = 2π
∞

∑
m=−∞

vmδ
(

Ω− 2πm
T

)
, (56)

where vm is given in Eq. (10). The Fourier transform of the periodic impulse train is

∞

∑
k=−∞

δ(t− kT) =
1
T

∞

∑
m=−∞

ej2πmt/T ⇐⇒
∞

∑
k=−∞

e−jkΩT =
2π

T

∞

∑
m=−∞

δ
(

Ω− 2πm
T

)
. (57)

The Poisson sum formula for the Fourier transform with radian argument is

∞

∑
k=−∞

v(t− kT) =
1
T

∞

∑
m=−∞

V
(2πm

T

)
ej2πtm/T. (58)
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