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1 Introduction

This document examines methods to generate a combinatorial index for the selection of items, and
the decoding of the index to produce the corresponding selection of items. Marching through the
indices produces lexicographically ordered selections. Three cases are considered: selections with
no repeated items, selections with repetitions, and selections with prescribed repetition multipli-
cities.

2 Combinations – No Repetitions

Consider the selection of K items from a list of N items. The order of the items in the selection
does not matter, and the selection does not include repeated items. The number of unique ways
to select the K items is

Nc =

(
N
K

)
=

N!
(N − K)! K!

.
(1)

The N items are indexed from 0 to N− 1. The K selected indices of the items can be represented
as a vector of N binary values (the selected K indices are non-zero):

a = [a0, a1, . . . , aN−1], an ∈ {0, 1}. (2)

The constraint on having K non-zero binary digits is

N−1

∑
n=0

an = K. (3)

The vector a interpreted as binary number (least significant bit first) lexicographically orders the
selections. However, many of the 2N possible values of a do not satisfy the constraint of having
exactly K non-zero values.

An alternate representation uses a vector of K indices,

Ia = [Ia(1), ..., Ia(K)], where Ik ∈ {0, 1, . . . , N − 1}. (4)

The vector of indices is in (sorted) ascending order. If Ia is considered to be a N-ary number (least
significant digit first), it can also be used to lexicographically order the selections. However, many
of NK possible value of Ia are either permutations of allowed (sorted) values or have repeated
indices.
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As an example, consider choosing 3 items from a collection of 20 items. The number of selecti-
ons (order does not matter, no repetitions allowed) is 1140. This means that for the vector a, only
1140 of the 1 048 576 possible values represent the selection of exactly 3 values. For the vector Ia,
only 1140 values out of 27 000 possible values represent valid sorted-order selections.

The goal is to create a combinatorial index, taking on values from 0 to (N
K)− 1, from a valid a

or Ia vector. Conversely, a valid a or Ia vector will be created from the combinatorial index. Each
combinatorial index should correspond to a unique selection of K items – ordered combinatorial
indices will correspond to selections in lexicographic order.

An algorithm to index the combinatorial cases was presented by Schalkwijk [1].1 Adapted to
the convention of increasing lexicographic order, the index is calculated as

ic(a) =
N−1

∑
n=0

an

(
n
kn

)
, (5)

where kn is an item count vector,

kn =
n

∑
i=0

ai. (6)

The value kn is the number of selected items with index less than or equal to n – this count can be
updated on the fly, kn+1 = kn + an. It should be noted that the expression for (n

k) is defined to be
zero for n < k.

Using Ia, Eq. (5) can also be written as

ic(Ia) =
K

∑
k=1

(
Ia(k)

k

)
. (7)

Note that this expression assumes that Ia(k) has been sorted (increasing values). Calculating the
index involves the summation of K combinatorial values.

2.1 Coding trellis – no repetitions

The process of generating the index can be viewed as traversing a trellis. The trellis for K = 3
is shown in Fig. 1. Each diagonally upward transition from node (n, k) has an associated com-
binatorial term (n

k). Start at the lower left corner with the item index n set to zero, the number

1The present author described the combinatorial coding scheme for use in a multipulse speech coder [2]. A combi-
natorial index was used to code the position of a fixed number of pulses chosen from a set of possible positions. After
the presentation of that conference paper, J.-P. Adoul brought the Schalkwijk paper [1] to the this author’s attention.
Later, combinatorial coding was used in a standardized speech coder (ITU-T G.723.1 [3]). See [4], for a description of
the details of the combinatorial coding and decoding used in G.723.1.
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of selected items k set to zero, and the combinatorial index set to zero. At each value of n, move
horizontally to the right if that item is not selected. If an item is selected, move up diagonally
and add the corresponding combinatorial term on the transition to the combinatorial index. The
process is terminated after reaching K items.
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Fig. 1 Trellis diagram for combinatorial coding for (K = 3)

2.2 Combinatorial index / lexicographic order

Consider the partial sum of the combinatorial terms for a sequence of diagonal moves starting
from the bottom of the trellis at node (n, 0),

Sc(L, n) =
L

∑
k=1

(
n + k− 1

k

)
, 1 ≤ L ≤ K. (8)

The goal is to find a closed form for this partial sum. A proof by induction will be used:

• Propose a formula for the partial sum of L terms.

• Show that this formula applies for L = 1.

• Induction hypothesis: Show that the formula applies when the partial sum is extended from
L terms to L + 1 terms.

The partial sum formula is

Sc(L, n) =
(

n + L
L

)
− 1. (9)

A direct direct evaluation for L = 1 shows that the formula applies. Now assume the partial sum
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formula applies for L terms. For L + 1 terms,

Sc(L + 1, n) =
(

n + L
L + 1

)
+ SL

=

(
n + L
L + 1

)
+

(
n + L

L

)
− 1.

(10)

Using the combinatorial identity, (
p
q

)
=

(
p− 1

q

)
+

(
p− 1
q− 1

)
, (11)

then
Sc(L + 1, n) =

(
n + L + 1

L + 1

)
− 1. (12)

This shows that the partial sum formula applies for all L.
From the trellis diagram, the smallest combinatorial index is generated by moving up the left-

most diagonals. Application of the sum along the diagonals shows that the leftmost diagonal
Sc(K, 0) is zero.) This is the combinatorial index for choosing the first K items. The largest sum is
generated by the rightmost diagonals. This sum is Sc(K, N − K) is (N

K)− 1. This is the combinato-
rial index for choosing the last K items.

The goal is to show that the combinatorial index imposes a lexicographic ordering of the se-
lected items. Consider an induction argument for a vector a of length n and weight k. All such a
vectors result in a path through a sub-trellis ending at node (n, k). Assume that the combinatorial
indices for all such a correspond to a lexicographic order of the vectors. There are (n

k) vectors of
length n and weight k. Combinatorial indices take on all values from zero (path along the leftmost
diagonals in the sub-lattice) to (n

k)− 1 (path along the rightmost diagonals in the sub-lattice).
Now increase the length of a by one. If the added element is zero, there is no change in the

lexicographic value of the vector a, k remains unchanged, and there is no change in the combina-
torial index. If the added element is a one, the new a is lexicographically larger than the original
vector, and k is increased by one. The corresponding combinatorial index is increased by (n

k). This
value is larger (by one) than the largest possible index produced by the original vector a. The
combinatorial index is in the lexicographic order of the new a and the largest possible index at the
new node is (n+1

k+1)− 1.
It is straightforward to verify that the combinatorial indices for small n and k are in proper

order. This then completes a proof of the correct one-to-one ordering of the combinatorial index
and the lexicographic order of vectors a for a fixed N and K.
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2.3 Decoding the combinatorial index – no repetitions

The decoding of a combinatorial index to a a vector is accomplished by following the coding trel-
lis from its terminal point back to the beginning point. In Fig. 2, the trellis has been redrawn by
flipping the coding trellis and reversing the transitions. Start with the combinatorial index at the
upper left corner. Compare that combinatorial index with the combinatorial term on the diago-
nally downward transition. If the index is larger than the combinatorial index, the corresponding
item has been selected. Subtract the combinatorial term from the index and follow the downward
diagonal transition. Otherwise, continue to the right to the next node.
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Fig. 2 Trellis diagram for combinatorial decoding for (K = 3)

There are K× (N− K + 1) combinatorial terms in the trellis diagram for coding and decoding.
These can be precomputed and stored in a table. An alternative is to update the combinatorial
terms as we move along using Eq. (11).

3 Combinations – with Repetitions

The number of combinations of selections of K items from a set of N items allowing repeated items
in the selection is denoted as

Nm =

((
N
K

))
=

(
N + K− 1

K

)
.

(13)

The multiset function
((n

k

))
behaves differently from the binomial coefficient (n

k). For a fixed n, the
multiset function is an increasing function of k, whereas the binomial coefficient has its largest
value for k near N/2. The selection function a is no longer binary – each element can take on
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values from 0 to K,
a = [a0, a1, . . . , aN−1], an ∈ {0, . . . , K}, (14)

with the constraint,
N−1

∑
n=0

an = K. (15)

The combinatorial index for combinations with repetitions case is,

im(a) =
N−1

∑
n=0

an

∑
k=1

((
n

kn−1 + k

))
, (16)

where the item count vector is

kn =
n

∑
i=0

ai. (17)

As before, the combinatorial index can be calculated from the (sorted) vector of K indices Ia

for the selected items. With repetitions, the same index can appear more than once in Ia. The
combinatorial index is computed as

im(Ia) =
K

∑
k=1

((
Ia(k)

k

))
. (18)

3.1 Coding trellis – with repetitions

The process of generating the combinatorial index can be viewed as traversing the trellis structure
shown in Fig. 3. Start from the lower left corner. If items are present for a given n, move up
vertically adding the combinatorial terms on the transitions until all items with index n have been
considered. Next, move horizontally to the next value of n.
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Fig. 3 Trellis diagram for combinatorial coding (with repetitions) for (K = 3)
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Consider the partial sum of the combinatorial terms for a sequence of upward moves starting
from the bottom at node (n, 0),

Sm(L, n) =
L

∑
k=1

((n
k

))
. (19)

Using an induction argument, the partial sum formula is

Sm(L, n) =
((

n + 1
L

))
− 1. (20)

A direct evaluation for L = 1 shows that the formula applies. Now assume the partial sum
formula applies for L terms. For L + 1 terms,

Sm(L + 1, n) =
((

n
L + 1

))
+ SL(, n)

=

((
n

L + 1

))
+

((
n + 1

L

))
− 1.

(21)

Using the multiset identity, ((
p
q

))
=

((
p

q− 1

))
+

((
p− 1

q

))
, (22)

then
Sm(L + 1, n) =

((
n + 1
L + 1

))
− 1. (23)

This shows that the partial sum formula applies for all L.
The smallest combinatorial index occurs if all K items are at n = 0. That index is zero. The

largest combinatorial index occurs if all K items are at n = N − 1. That index is
((

N
K

))
− 1.

Consider the same example used earlier. For no repetitions, the number of choices of 3 items
selected from 20 possibilities was 1140. If repetitions are allowed the number goes to 1540, of
which 400 have at least one repeated selected index.

An induction argument as used for the combinations with no repetitions case, shows that
the combinatorial index for the combinations with repetitions case also imposes a lexicographic
ordering to the selected items.

3.2 Decoding the combinatorial index – with repetitions

In Fig. 4, the coding trellis has been redrawn by flipping the coding trellis and reversing transiti-
ons. Start with the combinatorial index at the top left. Compare that index with the combinatorial
term on the downward transition. If the combinational index is larger than the term on the trellis,
subtract that term from the index, and add an item. Continue downward as long as the index is
larger than the corresponding combinatorial term on the downward transition. Then proceed one
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step to the right.
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Fig. 4 Trellis diagram for combinatorial decoding (with repetitions) for (K = 3)

4 Categories

The selection of combinations with repetition subsumes the selection of combinations with no
repetitions. Each K item selection can be categorized. Let the categories be indicated as a vector of
K values that shows the multiplicities of a particular selection. The sum of the components of the
category vector is K. For instance the category vector [1 1 1 1 1] indicates that all K values are of
multiplicity 1, i.e. no repetitions. The category vector [ 1 1 1 2] has K− 2 items with no repetitions
(multiplicity 1), and 1 item with multiplicity 2. The category vectors are shown as being of length
K. The blank elements in the category vector can be considered to be zero.

The generation of the category vectors for a given K is a problem in creating integer partitions.
The subject of integer partitions has a voluminous literature. Even determining the number of
such category vectors as a function of K, without actually generating the partitions, involves a
deep dive into theory.2 The category vectors can be programmatically generated in lexicographic
order starting from the all-ones vector (see for instance [5]).

Once the category vectors are known, the number of selections in each category can be deter-
mined using combinatorial arguments. The number of non-zero elements in the category vector
gives the number of unique elements Ku. Then the number of K-selections with that category
vector is given by

Nr =
N!

(N − Ku)! n1! n2! · · · nK!
, (24)

2The number of partitions is given by the partition function. The number of partitions has been tabulated for mode-
rate values of K.
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where nk is the number of elements in the category vector with multiplicity k. The ratio of the
terms involving N gives the number of permutations of the Ku unique items taken from the list
of N items. Each nk! term in the denominator cancels out the fraction of the permutations due to
the nk items of multiplicity k. Note that if nk = 0, then by definition nk! = 1. If all items in the
selection are unique (no repetitions, Ku = K, n1 = N − K, n2, . . . , nK are zero), the formula gives
(N

K) as expected.
Setting n0 = N − Ku, the number of K item selections in Eq. (24) can be expressed in terms of

the multichoose function (multinomial coefficient),(
N

n0, n1, . . . , nK

)
=

N!
n0! n1! · · · nK!

, (25)

where ∑k nk = N.
The category vectors for K = 5 are listed in Table 1. The category vectors depend only on K.

The number of selections in each category depends on both N and K. The category vectors were
generated using Algorithm P in Section 7.2.1.4 of [5]. The number of selections in each category
is calculated using Eq. (24) for N = 20 and K = 5. The first category (no repetitions) has (N

K)

selections (here 15 504). The sum of the number of values in all categories is
((

N
K

))
(here 42 504).

Table 1 Categories for selecting K = 5 items from N = 20 items

Category Number

[ 1 1 1 1 1 ] × 15 504
[ 1 1 1 2 ] × 19 380
[ 1 2 2 ] × 3 420
[ 1 1 3 ] × 3 420
[ 2 3 ] × 380
[ 1 4 ] × 380
[ 5 ] × 20

4.1 Coding category selections

4.1.1 Multilevel symbols

Schalkwijk [1] proposes a scheme to generate a combinatorial index for multi-level index vectors
a. The index values can take on Q values 0 to Q− 1. Symbol count vectors md

n are defined as

md
n =

n

∑
i=0

δ(ai, d), d ∈ {0, 1, . . . , Q− 1}. (26)



Combinatorial Coding 10

where δ(p, q) is the Kronecker delta function,

δ(p, q) =

0, p 6= q,

1, p = q.
(27)

Since for each value of n, only one of the md
n values is set to one,

Q−1

∑
d=0

md
n = n + 1; (28)

The vector a contains nd instances of symbol d,

nd = md
N−1. (29)

The vector of the nd values establishes a symbol count vector for vector a,

Ca = [n0, n1, . . . , nQ−1], where ∑
i

ni = N. (30)

The combinatorial index for a Q-ary a vector is given in [1] for a given number of each of the
multi-valued symbols,

is(a) =
N−1

∑
n=0

an−1

∑
i=0

n!

(mi
n − 1)!

Q−1

∏
j=0
j 6=k

mj
n!

(31)

In this equation, the term (mi
n − 1)! in the denominator can evaluate to (−1)!. To handle that case,

the factorial of −1 is defined to be ∞.
Consider the multichoose identity,

(
n + 1

n0, n1, . . . , nK

)
=

K

∑
i=0

(
n

n0, . . . , (ni − 1), . . . , nK

)
, (32)

where n0 + · · ·+ nK = n + 1. A partial sum version of this identity is

L−1

∑
i=0

(
n

n0, . . . , (ni − 1), . . . , nK

)
=

(
n + 1

n0, n1, . . . , nK

)
1

n + 1

L−1

∑
i=0

ni. (33)



Combinatorial Coding 11

Using the partial sum identity, the combinatorial index can be written as

is(a) =
N−1

∑
n=0

[(
n + 1

m0
n, . . . , mQ−1

n

)
1

n + 1

an−1

∑
i=0

mi
n

]
. (34)

Since only one of the elements of the symbol count vector (element man
n ) is updated for each n,

Eq. (34) can also be written as

is(a) =
N−1

∑
n=0

[(
n

m0
n−1, . . . , mQ−1

n−1

)
1

man
n

an−1

∑
i=0

mi
n

]
. (35)

Equation (34) is useful for coding the index (n stepped in an increasing order), while Eq. (35) is
useful for generating the vector a from an index (n stepped downward).

As will be shown, the combinatorial index is(a) takes on values from 0 to Ns − 1, where

Ns =

(
N

n0, . . . , nQ−1

)
. (36)

Consider ternary symbols (0, 1, 2) in a vector of length 9 with symbol count vector [4, 2, 3].
The symbol count vector specifies the number of each symbol in the vectors. The total number of
vectors in this category is ( 9

4,2,3) = 1 260. Examples of vectors in this category are shown below.

[2 2 2 1 1 0 0 0 0]. This is the first vector in lexicographic order in the category. Since the vector
a has symbols in descending order, each term in the sum in Eq. (35) is zero, giving the
combinatorial index 0.

[0 2 2 0 1 0 2 1 0]. This is a vector in the category, giving the combinatorial index 304.

[0 0 0 0 1 1 2 2 2]. This is the last vector in lexicographic order in the category. This vector is the
reversal of the first vector in lexicographic order. The combinatorial index for this vector is
Ns − 1 = 1 259.

An inductive argument can be used to show that the combinatorial index for a particular sym-
bol count vector is assigned in lexicographic order of the vector a. Assume that for a vector of
length N, combinatorial indices are assigned in lexicographic order of that vector and that the
indices take on values from 0 to Ns − 1, where Ns is the multichoose value for a vector of length
N and the symbol count vector [m0

N−1, . . . , mQ−1
N−1].

Increase N by one. If element aN is a zero, the combinatorial index does not change, and the
lexicographic order of the new a is the same as the old a. There is another possibility for no
increase in the combinatorial index: all symbol counts for symbols below the current symbol aN

are zero. That means the vector is the first vector in lexicographic order. As in the example given
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earlier, in this case symbols up to aN are in descending order. For all other cases, the combinatorial
index increases, and that increase is larger for increasing aN . This means that if the aN−1 increases
the lexicographic order, the combinatorial index also increases.

Let the number of combinations for an N length vector be Ns(N) and let the combinatorial
index for an N length vector be is(a, N). From Eq. (34).

is(a, N + 1) = is(a, N) + Ns(N + 1)
1

N + 1

aN−1

∑
i=0

mi
N , (37)

where
Ns(N + 1) =

(
N + 1

m0
N , . . . , mQ−1

N

)
. (38)

The value of Ns(N) in Eq. (36) can be expressed in terms of Ns(N + 1) using the fact that only maN
N

is updated for n = N,

Ns(N) =

(
N

m0
N−1, . . . , mQ−1

N−1

)
=

(
N + 1

m0
N , . . . , mQ−1

N

)
maN

N
N + 1

.
(39)

Then the upper bound on is(N + 1) is

0 ≤ is(a, N + 1) ≤
[

Ns(N + 1)
maN

N
N + 1

− 1
]
+

[
Ns(N + 1)

1
N + 1

aN−1

∑
i=0

mi
N

]

= Ns(N + 1)

[
1

N + 1

aN

∑
i=0

mi
N

]
− 1

≤ Ns(N + 1)− 1.

(40)

The upper limit is reached if aN = Q− 1. To complete the inductive argument, it can be shown
that the upper limit applies for N = 1.

The coding process generates a combinatorial index and a symbol count vector. To decode
the index, both the combinatorial index and the symbol count vector are needed. The decoding
process proceeds by reversing the coding procedure and peeling off terms from the combinatorial
index.

4.1.2 Repeated items

The exposition in [1] is in terms of coding an a vector consisting of signalling values. In keeping
with the exposition in terms of selecting items, the multilevel vector a can be reinterpreted as
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representing the multiplicity of the selection of item n out of a possible N items. A zero multiplicity
means that the item is not selected, and a non-zero multiplicity of d means that the item is selected
d times. In keeping with previous discussions, the total number of items selected is K,

Q−1

∑
i=1

ni = K. (41)

If this is the only constraint, the problem is that of combinations with repetitions of Section 3. To
use the formalism in this section, the number of repetitions rd must be specified for each d, Spe-
cifying each multiplicities is equivalent to choosing the category vector of Section 4. The coding
scheme then becomes one of a lexicographic ordering of vectors a in a specific multiplicity cate-
gory. The category with no repetitions (vector a has N − K zeros and K ones) leads to the same
formulas as were derived in Section 2.

The formulation given in Eq. (35) is calculated from the vector a. The calculation can also be
based on Ia. To this end:

• The selected items are Ia(k), for 1 ≤ k ≤ K, with K = Q− 1. Repeats are allowed.

• In Eq. (35) the combinatorial index is only updated for an > 0. Create the vector, I ′a, which
contains the Ku unique values in Ia. The elements I′a(k) give the values of n for selected
items. Record the multiplicities of the items in an auxiliary vector r,

Ku

∑
k=1

rk = K. (42)

• The symbol count md
n is reinterpreted as a multiplicity count. The multiplicity count md

n for
1 ≤ d ≤ K is updated for each selected item. The multiplicity count m0

n is updated for
unselected items, but is not used until a selected item is encountered. Instead, m0

n can be
updated for each selected item using Eq. (28),

m0
n = n + 1−

K

∑
i=1

mi
n. (43)

• Reindex the multiplicity counts with k as md
k with 1 ≤ k ≤ Ku. The updates to the multipli-

city counts are

md
k = md

k−1 + δ(d, rk), 1 ≤ d ≤ K,

m0
k = n + 1−

K

∑
i=1

mi
k.

(44)
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Now the calculation of the combinatorial index in Eq. (35) can be rewritten as

is(I ′a) =
Ku

∑
k=1

[(
I′a(k)

m0
k−1, . . . , mK

k−1

)
1

mrk
k

rk−1

∑
i=0

mi
k

]
. (45)

One could envisage coding all categories for combinations with repetitions as follows. Identify
the category of the vector a, as in Section 4. The final code will consist of an offset (sum of the
numbers of vectors in preceding categories) plus the combinatorial code for the current category.
The total number of codes will be the same as coding combinations with repetitions. Decoding can
be done by first identifying the category from a table of offsets for the categories, and then using
the difference from the offset as a combinatorial code for the identified category. This procedure
produces lexicographically order within a category.

5 Summary

Since the coding/decoding algorithms are straightforward, the approaches described here can be
used to efficiently generate lexicographically ordered selections. For combinations with repetiti-
ons, the calculation of the combinatorial index and its decoding as described here has not, as for
as this author is aware, been reported elsewhere.

This report has been consistent in that the selection vector a is defined as having elements
going from least significant lexicographically to most significant. The appropriate changes have
to be made if other conventions are adopted.

Appendices A through D show the coding/decoding procedures written in the Matlab lan-
guage. These routines are available on the MathWorks site as a user contribution (File Exchange,
keyword: “combinatorial index”) [6]. The files that can be downloaded from the MathWorks site
also include test files.
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Appendix A CombCode / CombDecode - Combinatorial Codes (no repetitions)

The routine CombCode in this appendix implements Eq. (7) in Matlab. The routine sorts the array
of selected indices if they are not in ascending order. The routine CombDecode implements the
decoding procedure.

func t ion CIndex = CombCode( SItems )
% Cindex = CombCode( SItems )
% Generate a combinator ia l l e x i c o g r a p h i c index from a vector of K items
% from a c o l l e c t i o n of N items . The items are indexed as 0 to N−1. Each of
% s e l e c t e d items i s the index value of the item . The items in the vec tor
% cannot inc lude r e p e t i t i o n s and order does not matter . N i s not e x p l i t l y
% set , but N >= max( SItems ) + 1 .
%
% CIndex − Index f o r the vec tor of K items , 0 to C(N,K)−1 , where C(N,K) i s
% N choose K
% SItems − Vector of K i n d i c e s of the s e l e c t e d items . Each element of the
% vector takes on a value 0 to N−1.

% $Id : CombCode .m, v 1 . 3 2018/02/12 0 3 : 4 3 : 3 7 pkabal Exp $

% Sort the items
i f ( any ( d i f f ( SItems ) < 0 ) )

SItems = I n s S o r t ( SItems ) ;
end

% Check SItems
i f ( SItems ( 1 ) < 0) | | any ( d i f f ( SItems ) <= 0)

e r r o r ( ’ I n v a l i d item index ’ ) ;
end

% Number of s e l e c t e d items
K = length ( SItems ) ;

% nchoosek ( n , k ) does not work f o r n < k ; i t can be s e t to 0
% In the loop nchoosek ( n , k ) i s evaluated f o r n = 0 to N−1, k from 1 to K

% Find the combinator ia l code
CIndex = 0 ;
f o r k = 1 :K

n = SItems ( k ) ;
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i f ( n >= k )
CIndex = CIndex + nchoosek ( n , k ) ;

end
end

end

% −−−−− −−−−−
func t ion X = I n s S o r t (X)
% Sor t a vec tor in ascending order ( i n s e r t i o n s o r t algorithm )
% Y = I n s S o r t (X)
% X − Vector of N values to be sor ted
% Y − Output vec tor of sor ted values of X

N = length (X ) ;

f o r i = 2 :N
Xi = X( i ) ;
j = i ;
while ( j > 1 && X( j −1) > Xi )

X( j ) = X( j −1);
j = j − 1 ;

end
i f ( i ˜= j )

X( j ) = Xi ;
end

end

end

funct ion SItems = CombDecode ( CIndex , N, K)
% SItems = CombDecode ( CIndex , N, K)
% Decode a combinator ia l index to generate a vec tor of length K. The vector
% elements are in i n c r e a s i n g order , with each element taking on a value
% from 0 to N−1.
%
% SItems − Vector of K i n d i c e s of the s e l e c t e d items . Each element of the
% vector takes on a value 0 to N−1.
% CIndex − Index f o r the vec tor of K items , 0 to C(N,K)−1 , where C(N,K) i s
% N choose K
% N − Number of items to choose from (N > 0)
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% K − Number of items in the vec tor (0 to N)

% $Id : CombDecode .m, v 1 . 3 2018/02/12 0 3 : 4 3 : 5 0 pkabal Exp $

i f ( CIndex < 0 | | CIndex >= nchoosek (N, K) )
e r r o r ( ’ I n v a l i d combinator ia l index value ’ ) ;

end

% nchoosek ( n , k ) does not work f o r n < k ; i t should be s e t to 0
% In the loop , nchoosek ( n , k ) i s evaluated f o r n = 0 to N−1, k from 1 to K

SItems = NaN( 1 , K ) ;
f o r n = N−1:−1:0

Cnode = 0 ;
i f ( n >= K)

Cnode = nchoosek ( n , K ) ;
end
i f ( CIndex >= Cnode )

SItems (K) = n ;
i f (K <= 1)

break ; % Early return
end
K = K − 1 ;
CIndex = CIndex − Cnode ;

end
end

end
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Appendix B MultiCombCode / MultiCombDecode - Combinatorial Codes (with
repetitions)

The routine MultiCombCode in this appendix implements Eq. (18) in Matlab. The routine sorts
the array of selected indices if they are not in ascending order. The routine MultiCombDecode
implements the decoding procedure.

func t ion CIndex = MultiCombCode ( SItems )
% [ CIndex , K] = MultiCombCode ( SItems )
% Generate a multi−combinator ia l l e x i c o g r a p h i c index from a vector of K
% items ( r e p e t i t i o n s allowed ) . The items are indexed as 0 to N−1. Each of
% s e l e c t e d items i s the index value of the item . The items in the vec tor
% can include r e p e t i t i o n s and order does not matter .
%
% CIndex − combinator ia l code , 0 to Mul t i se t (max( SItemps )+1 , K)
% SItems − L i s t of items , each 0 to N−1

% $Id : MultiCombCode .m, v 1 . 3 2018/02/12 0 3 : 4 4 : 3 9 pkabal Exp $

% Number of combinations with r e p e t i t i o n
% Mult iSet does not work f o r n = 0 , i t should return 0
% In the loop , Mult iSet i s evaluated f o r n = 0 to N−1, k from 1 to K
Mult iSet = @( n , k ) nchoosek ( n+k−1, k ) ; % n > 1

% Sort the s e l e c t e d items
i f ( any ( d i f f ( SItems ) < 0 ) )

SItems = I n s S o r t ( SItems ) ;
end

% Check SItems
i f ( SItems ( 1 ) < 0)

e r r o r ( ’ I n v a l i d item index ’ ) ;
end

% Number of s e l e c t e d items
K = length ( SItems ) ;

% Find the multi−combinator ia l code
CIndex = 0 ;
f o r k = 1 :K

n = SItems ( k ) ;
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i f ( n > 0)
CIndex = CIndex + Mult iSet ( n , k ) ;

end
end

end

% −−−−− −−−−−
func t ion X = I n s S o r t (X)
% Sor t a vec tor in ascending order ( i n s e r t i o n s o r t algorithm )
% [Y] = I n s S o r t (X)
% X − Vector of N values to be sor ted
% Y − Output vec tor of sor ted values of X

N = length (X ) ;

f o r i = 2 :N
Xi = X( i ) ;
j = i ;
while ( j > 1 && X( j −1) > Xi )

X( j ) = X( j −1);
j = j − 1 ;

end
i f ( i ˜= j )

X( j ) = Xi ;
end

end

end

funct ion SItems = MultiCombDecode ( CIndex , N, K)
% SItems = MultiCombDecode ( CIndex , N, K)
% Decode a multi−combinator ia l index to generate a vec tor of length K.
% The vec tor elements are in i n c r e a s i n g order , with each element taking on
% a value from 0 to N−1. Values can be repeated .
%
% SItems − Vector of K i n d i c e s of the s e l e c t e d items . Each element of the
% vector takes on a value 0 to N−1.
% CIndex − Index f o r the vec tor of K items , 0 to M(N,K)−1 , where M(N,K) i s
% N Mult iSet K
% N − Number of items to choose from (N > 0)
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% K − Number of items in the vec tor (0 to N)

% $Id : MultiCombDecode .m, v 1 . 4 2018/02/12 0 3 : 4 4 : 5 1 pkabal Exp $

% Number of combinations with r e p e t i t i o n
% Mult iSet does not work f o r n = 0 , i t should return 0
% Mult iSet i s evaluated f o r n = 0 to N−1, k from 1 to K
Mult iSet = @( n , k ) nchoosek ( n+k−1, k ) ; % n > 1

i f ( CIndex < 0 | | CIndex >= Mult iSet (N, K) )
e r r o r ( ’ I n v a l i d multi−combinator ia l index value ’ ) ;

end

SItems = NaN( 1 , K ) ;
f o r n = N−1:−1:0

while (K >= 1)
Cnode = 0 ;
i f ( n > 0)

Cnode = Mult iSet ( n , K ) ;
end
i f ( CIndex >= Cnode )

SItems (K) = n ;
K = K − 1 ;
CIndex = CIndex − Cnode ;

e l s e
break ;

end
end
i f (K <= 0)

break ; % Early return
end

end

end
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Appendix C MultiChooseCode / MultiChooseDecode - Combinatorial Codes (with
prescribed repetitions)

The routine MultiChooseCode in this appendix implements Eq. (45) in Matlab. The routine sorts
the array of selected indices if they are not in ascending order. The routine MultiChooseDecode
implements the decoding procedure.

func t ion CIndex = MultiChooseCode ( SItems )
% CIndex = MultiChooseCode ( SItems )
% Generate a l e x i c o g r a p h i c a l l y ordered combinator ia l code f o r a vec tor of
% K items s e l e c t e d from N items f o r the p a r t i c u l a r combination of item
% m u l t i p l i c i t i e s . These m u l t i p l i c i t i e s def ine a category which can be
% found from the s e l e c t e d items using the rout ine M u l t i p l i c i t y .
%
% CIndex − Combinatorial code taking on values from 0 to Ns−1, where
% Ns = MultiChoose (N, Category ) . I n c r e a s i n g values of CIndex correspond
% to i n c r e a s i n g l e x i c o g r a p h i c order of the s e l e c t e d item vector .
% SItems − Input vec tor of K items ( values 0 to N−1)

% $Id : MultiChooseCode .m, v 1 . 4 2018/02/19 1 3 : 3 5 : 3 1 pkabal Exp $

% Sort the s e l e c t e d items
i f ( any ( d i f f ( SItems < 0 ) ) )

SItems = I n s S o r t ( SItems ) ;
end

% Check input vec tor
i f ( SItems ( 1 ) < 0)

e r r o r ( ’ I n v a l i d values in input vec tor ’ ) ;
end

K = length ( SItems ) ;
RepCount = zeros ( 1 , K+ 1 ) ;
SNZ = 0 ; % sum( RepCount ( ( 1 : K) + 1 ) )

% Loop over a l l i tems
CIndex = 0 ;
k = 1 ;
while ( k <= K)

n = SItems ( k ) ;
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% Find the m u l t i p l i c i t y of item n
isym = 1 ;
f o r j = k +1:K

i f ( SItems ( j ) ˜= n )
break ;

end
isym = isym + 1 ;

end
k = k + isym ;

% Update Repcount f o r n−1 ( j u s t before the current item ) to account f o r
% the unse lec ted items
RepCount (0+1) = n − SNZ; % sum( repCount ) = n

% Sum m u l t i p l i c i t y values up to ( but not inc luding ) the current one
s = sum( RepCount ( ( 0 : isym−1)+1) ) ;
i f ( s > 0)

CIndex = CIndex + MultiChoose ( n , RepCount ) ∗ s / . . .
( RepCount ( isym +1) + 1 ) ;

end

% Update the r e p e t i t i o n count f o r the current n
RepCount ( isym +1) = RepCount ( isym +1) + 1 ;
SNZ = SNZ + 1 ; % Number of unique items processed

end

end

% −−−−− −−−−−
func t ion Nm = MultiChoose (N, r )

i f (sum( r ) ˜= N)
e r r o r ( ’ I n v a l i d parameters to MultiChoose ’ ) ;

end

% Simplest form ( s u b j e c t to overflow in the numerator )
% N = f a c t o r i a l ( n ) / prod ( f a c t o r i a l ( r ) ) ;

% Cancel out the l a r g e s t f a c t o r in r using nchoosek
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[ rmax , I ] = max( r ) ;
r ( I ( 1 ) ) = 1 ;

Nm = nchoosek (N, rmax ) ∗ f a c t o r i a l (N − rmax ) / prod ( f a c t o r i a l ( r ) ) ;

end

% −−−−− −−−−−
func t ion X = I n s S o r t (X)
% Sor t a vec tor in ascending order ( i n s e r t i o n s o r t algorithm )
% [Y] = I n s S o r t (X)
% X − Vector of N values to be sor ted
% Y − Output vec tor of sor ted values of X

N = length (X ) ;

f o r i = 2 :N
Xi = X( i ) ;
j = i ;
while ( j > 1 && X( j −1) > Xi )

X( j ) = X( j −1);
j = j − 1 ;

end
i f ( i ˜= j )

X( j ) = Xi ;
end

end

end

funct ion SItems = MultiChooseDecode ( CIndex , N, Category )
% SItems = MultiLevelDecode ( CIndex , N, Category )
% Decode a combinator ia l index f o r a vec tor of s e l e c t e d items
%
% SItems − Output vec tor of K items ( values 0 to Q−1)
% CIndex − Combinatorial code taking on values from 0 to Ns−1, where
% Ns = MultiChoose (N, Category ) . I n c r e a s i n g values of CIndex
% correspond to i n c r e a s i n g l e x i c o g r a p h i c order of the vec tor SItems .
% N − Number of items to s e l e c t from
% Category − K element vec tor represent ing the m u l t i p l i c i t i e s of the
% items in SItems
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% $Id : MultiChooseDecode .m, v 1 . 5 2018/02/19 1 3 : 3 5 : 1 8 pkabal Exp $

% Generate the l e v e l count vec tor
RepCount = Cat2LevCount (N, Category ) ;
K = length ( RepCount ) − 1 ;

Ns = MultiChoose (N, RepCount ) ;
i f ( CIndex < 0 | | CIndex >= Ns)

e r r o r ( ’ Index out of range ’ ) ;
end

SItems = NaN( 1 , K ) ;
k = K;
f o r n = N−1:−1:0

% The combinator ia l index f o r [ n , RepCount ] i s between 0 and Ns−1, where
% Ns = MultiChoose ( n+1 , RepCount ) .
% Ca l c u l a te Cn , the term due to p o s s i b l e a [ n ] values − when Cn exceeds
% CIndex , we have gone too f a r − back o f f to previous value

S = 0 ;
CnP = 0 ;
f o r isym = 0 :K

S = S + RepCount ( isym + 1 ) ;
Cn = Ns ∗ S / ( n + 1 ) ;
i f (Cn > CIndex )

% Update Ns
Ns = Ns ∗ RepCount ( isym +1) / ( n + 1 ) ;

% Update the r e p e t i t i o n count / index
RepCount ( isym +1) = RepCount ( isym +1) − 1 ;
CIndex = CIndex − CnP ;

f o r i = 1 : isym
SItems ( k ) = n ;
k = k − 1 ;

end
break ;

e l s e
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CnP = Cn ;
end

end

i f ( k < 1) % Early e x i t when a l l i tems have been found
break ;

end

end

end

% −−−−− −−−−−
func t ion LevCount = Cat2LevCount (N, Category )
% Convert a category vec tor to a l e v e l count vec tor .
% Category − K element vec tor with the m u l t i p l i c i t y of the items .
% [0 0 . . . 1 1 . . . 2 2 2 . . . ]
% The category vec tor d e s c r i b e s the m u l t i p l i c i t y of K s e l e c t e d items .
% The appearance of a value 0 < i <= K, i n d i c a t e s t h a t an item i s
% included in the s e l e c t e d items with m u l t i p l i c i t y i . I f the value i
% i s repeated , more than one item has m u l t i p l i c i t y i . The sum of the
% values in Category i s K. The length of Category i s a l s o K. Zeros in
% Category are used to pad the vec tor (when items are repeated ) to the
% length K.
% LevCount − Q vector with a l e v e l count . Now the m u l t i p l i c i t y of an item
% i s i n t e r p r e t e d as a l e v e l . Levels are numbered from 0 to Q−1.
% LevCount ( i ) counts the number of i n s t a n c e s of each l e v e l . The sum of
% the elements in LevCount i s N.
%
% Category ( s i z e K) only counts s e l e c t e d items , while LevCount ( s i z e Q)
% counts 0 l e v e l s as well . These zero l e v e l s can be i n t e r p r e t e d to be
% non−s e l e c t e d items . Then
% Q = K+1
% Consider the K non−zero values in Category . These represent the ensemble
% of s e l e c t e d items . This number Knz w i l l be l e s s than K i f any item has
% a m u l t i p l i c i t y g r e a t e r than 1 . The number of unselec ted items i s
% LevCount [ 0 ] = N−Knz .

K = length ( Category ) ;
CatNz = Category ( Category > 0 ) ;
i f (sum( CatNz ) ˜= K)
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e r r o r ( ’ I n v a l i d category vec tor ’ ) ;
end

% Count the number of i n s t a n c e s of m u l t i p l i c i t y i in Category
Knz = length ( CatNz ) ;
LevCount = [N−Knz , sum( CatNz ’ == ( 1 :K) , 1 ) ] ;

end

% −−−−− −−−−−
func t ion Nm = MultiChoose (N, r )

i f (sum( r ) ˜= N)
e r r o r ( ’ I n v a l i d parameters to MultiChoose ’ ) ;

end

% Simplest form ( s u b j e c t to overflow in the numerator )
% N = f a c t o r i a l ( n ) / prod ( f a c t o r i a l ( r ) ) ;

% Cancel out the l a r g e s t f a c t o r in r using nchoosek
[ rmax , I ] = max( r ) ;
r ( I ( 1 ) ) = 1 ;

Nm = nchoosek (N, rmax ) ∗ f a c t o r i a l (N − rmax ) / prod ( f a c t o r i a l ( r ) ) ;

end
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Appendix D MultiLevelCode / MultiLevelDecode - Combinatorial Codes (with
prescribed numbers of levels)

The routine MultiLevelCode in this appendix implements Eq. (35) in Matlab. The routine sorts
the array of selected indices if they are not in ascending order. The routine MultiLeveleDecode
implements the decoding procedure.

func t ion CIndex = MultiLevelCode ( a )
% CIndex = MultiLevelCode ( a )
% Generate a l e x i c o g r a p h i c a l l y ordered combinator ia l code f o r a vec tor of
% Q−ary symbols
%
% CIndex − Combinatorial code taking on values from 0 to
% MultiChoose (N, Category )−1. I n c r e a s i n g values of CIndex correspond
% to i n c r e a s i n g l e x i c o g r a p h i c order of the vec tor a .
% a − Input vec tor of symbols (N values , each 0 to Q−1)

% $Id : MultiLevelCode .m, v 1 . 4 2018/02/19 1 3 : 3 4 : 5 7 pkabal Exp $

% Check input vec tor
i f ( any ( a < 0 ) )

e r r o r ( ’ I n v a l i d values in input vec tor ’ ) ;
end

Q = max( a ) + 1 ;
N = length ( a ) ;
SymCount = zeros ( 1 , Q) ;
Np = 1 ; % MultiChoose ( n , SymCount ) − i n i t i a l i z e d f o r n = 0 ;

% Loop over a l l i tems
CIndex = 0 ;
f o r n = 0 :N−1

% Current symbol
isym = a ( n + 1 ) ;

% Sum symbol values up to ( but not inc luding ) the current one
s = sum( SymCount ( ( 0 : isym−1)+1) ) ;
i f ( s > 0)

CIndex = CIndex + Np ∗ s / ( SymCount ( isym +1) + 1 ) ;
end
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% Update the symbol count
SymCount ( isym +1) = SymCount ( isym +1) + 1 ;

% Update Np f o r the next n
Np = Np ∗ ( n+1) / SymCount ( isym + 1 ) ;

end

end

funct ion a = MultiLevelDecode ( CIndex , SymCount )
% a = MultiLevelDecode ( CIndex , LevelCount )
% Decode a combinator ia l index f o r a vec tor of Q−ary symbols
%
% a − Output vec tor of symbols (N values , each 0 to Q−1)
% CIndex − Combinatorial code taking on values from 0 to
% MultiChoose (N, SymCount)−1. I n c r e a s i n g values of CIndex correspond
% to i n c r e a s i n g l e x i c o g r a p h i c order of the vec tor a .
% SymCount − Q element vec tor conta in ing symbol counts . SymCount ( i ) i s
% the number of times t h a t symbol i +1 appears in the vec tor a . The sum
% of the elements in SymCount i s N, the length of the input vec tor a .

% $Id : MultiLevelDecode .m, v 1 . 4 2018/02/19 1 3 : 3 4 : 3 1 pkabal Exp $

Q = length ( SymCount ) ;
N = sum( SymCount ) ;

Ns = MultiChoose (N, SymCount ) ;
i f ( CIndex < 0 | | CIndex >= Ns)

e r r o r ( ’ I n v a l i d index ’ ) ;
end

a = NaN( 1 , N) ;
f o r n = N−1:−1:0

% The combinator ia l index f o r [ n , SymCount ] i s from 0 to Ns−1, where
% Ns = MultiChoose ( n+1 , SymCount )
% Ca l c u l a te Cn , the term due to p o s s i b l e a [ n ] values − when Cn exceeds
% CIndex , we have gone too f a r − back o f f to previous value

S = 0 ;



Combinatorial Coding 29

CnP = 0 ;
f o r isym = 0 :Q−1

S = S + SymCount ( isym + 1 ) ;
Cn = Ns ∗ S / ( n + 1 ) ;
i f (Cn > CIndex )

% Update Ns
Ns = Ns ∗ SymCount ( isym +1) / ( n + 1 ) ;

% Update the symbol count / index
SymCount ( isym +1) = SymCount ( isym +1) − 1 ;
CIndex = CIndex − CnP ;

a ( n+1) = isym ;
break ;

e l s e
CnP = Cn ;

end
end

end

end

% −−−−− −−−−−
func t ion Nm = MultiChoose (N, r )

i f (sum( r ) ˜= N)
e r r o r ( ’ I n v a l i d parameters to MultiChoose ’ ) ;

end

% Simplest form ( s u b j e c t to overflow in the numerator )
% N = f a c t o r i a l ( n ) / prod ( f a c t o r i a l ( r ) ) ;

% Cancel out the l a r g e s t f a c t o r in r using nchoosek
[ rmax , I ] = max( r ) ;
r ( I ( 1 ) ) = 1 ;

Nm = nchoosek (N, rmax ) ∗ f a c t o r i a l (N − rmax ) / prod ( f a c t o r i a l ( r ) ) ;

end
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