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Generating Gaussian Pseudo-Random Variates 

1 Introduction 

This report examines low-complexity methods to generate pseudo-random Gaussian 

(normal) variates. We introduce a new method based on modelling the Gaussian probability 

density function using piecewise linear segments. This approach is shown to be both efficient 

and accurate, yet does not require the calculation of transcendental functions. 

The methods considered here map uniform distributions to create Gaussian variates. 

This report investigates the effect of the use of discrete variates, particularly in the tails of the 

Gaussian distribution. In addition, a new interpretation of the method of aliases leads its ap-

plication to non-uniform quantization. 

This report is an update of [1]. That report first introduced the piecewise-linear approxi-

mation approach for generating pseudo-random Gaussian variates. This version elaborates on 

the use of non-uniformly-spaced linear segments and introduces an error weighting for deter-

mination of the mixture probabilities. 

2 Uniform Variates 

2.1 Continuous Uniform Distribution 

Consider uniform continuous-valued variates 𝑥𝑢𝑐[𝑘] that lie in the range [0, 1]. The prob-

ability density function (pdf) of 𝑥𝑢𝑐[𝑘] is 

 𝑝𝑢𝑐(𝑥) = {
1, 0 ≤ 𝑥 ≤ 1,

0, otherwise.
 (1) 

The mean and standard deviation for this distribution are, 

 𝑚𝑢𝑥 =
1

2
,        𝜎𝑢𝑐

2 =
1

12
. (2) 

2.2 Discrete Uniform Distribution 

A number of schemes have been proposed to generate pseudo-random uniform variates. 

We describe one here, but many others exhibit similar behaviour, specifically that the values 

lie on a discrete grid. 
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Consider the multiplicative congruential method for generating a uniform variate 

[2][3][4]. The basic procedure takes the form 

 𝑥[𝑘] = mod(𝑎𝑥[𝑘 − 1],𝑀). (3) 

where 𝑎 is a carefully chosen multiplier, 𝑥[𝑘 − 1] is a previous (non-zero) variate and 𝑀 is an 

appropriate modulus. All values are integers. The book Numerical Recipes [3], suggests 𝑎 =

16807 and 𝑀 = 231 − 1. The generation of each variate requires a multiplication and a mod-

ulo operation. An algorithm due to Schrage [3, p. 278] avoids overflow in the calculation and 

can be used to implement a portable random number generator. The period of the generator is 

𝑀 − 1 for a non-zero initial value. The output values are integers in the interval [1,𝑀 − 1]. 

The value 0 does not appear in the output, since it would repeat for all future values. An addi-

tional shuffling step can be used to break up low order correlations (see [3]). 

It is common for uniform random number generators to return uniform variates as float-

ing- point numbers between 0 and 1. The routine given in [3] computes 

 𝑥𝑢𝑑[𝑘] =
𝑥[𝑘]

𝑀
. (4) 

The value 𝑥𝑢𝑑[𝑘] satisfies 

 
1

𝑀
≤ 𝑥𝑢𝑑[𝑘] ≤

𝑀 − 1

𝑀
. (5) 

The value 𝑥𝑢𝑑[𝑘] takes on discrete values. Since each value of 𝑥𝑢𝑑[𝑘] is equi-probable, the 

mean and variance of 𝑥𝑢𝑑[𝑘] are 

 𝑚𝑢𝑐 =
1

2
,        𝜎𝑢𝑐

2 =
1

12
−

1

6𝑀
. (6) 

3 Gaussian Variates 

Techniques for generating Gaussian variates from uniform variates are described in [2]. 

We consider two approaches for which computer programs are widely available 

3.1 Central Limit Theorem 

The Central Limit Theorem of probability states that a sum of independent, identically-

distributed random values has a cumulative distribution that approaches a Gaussian cumula-

tive distribution in the limit of a large number of terms [5]. Here we are interested in a finite 
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number of terms and wish to evaluate how close the distribution of the sum is to a Gaussian 

distribution. 

3.1.1 Sum of continuous uniform variates 

Consider adding 𝑁 independent (continuous) uniform variates, 

 𝑥𝑐 = ∑ 𝑥𝑢𝑐[𝑘]

𝑁−1

𝑘=0

. (7) 

The probability density function of the sum can be obtained by convolving the 𝑁 uniform den-

sities, 

 𝑝(𝑥, 𝑁) = 𝑝𝑢𝑐(𝑠) ∗ ⋯∗ 𝑝𝑢𝑐(𝑥). (8) 

We will use a generating function (here the Laplace transform) to express the result. The La-

place transform of the probability density of the sum can be expressed as the 𝑁-fold product 

of the Laplace transform of the uniform density. 

The uniform pdf can be written as the difference between two unit-step functions, 

 𝑝𝑢𝑐(𝑥) = 𝑢(𝑥) − 𝑢(𝑥 − 1), (9) 

where the unit step function is defined as 

 𝑢(𝑥) = {
1, 𝑥 ≥ 0,

0, otherwise.
 (10) 

Then the Laplace transform of 𝑝𝑐(𝑥, 𝑁) is 

 

𝑋𝑐(𝑠, 𝑁) = (
1 − 𝑒−𝑠

𝑠
)

𝑁

,

=
1

𝑠𝑁
∑(−1)𝑘 (

𝑁
𝑘
) 𝑒−𝑘𝑠

𝑁

𝑘=0

.

 (11) 

The inverse transform of this expression gives the probability density function (pdf) of the 

sum, 

 𝑝𝑐(𝑥, 𝑁) =
1

(𝑁 − 1)!
∑(−1)𝑘 (

𝑁
𝑘
) (𝑥 − 𝑘)𝑁−1𝑢(𝑥 − 𝑘) 

𝑁

𝑘=0

. (12) 

The pdf is formed from polynomial segments. The function value and 𝑁 − 2 derivatives are 

continuous between segments. From basic considerations, 𝑝𝑐(𝑥, 𝑁) is non-zero only for 0 ≤

𝑥 ≤ 𝑁 and is symmetric about 𝑁/2, i.e., 𝑝𝑐(𝑥, 𝑁) = 𝑝𝑐(𝑁 − 𝑥,𝑁). 
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The cumulative distribution function (cdf) can be calculated by integrating 𝑝𝑐(𝑥, 𝑁) or as 

the inverse transform of 𝑋𝑐(𝑠, 𝑁)/𝑠, 

 𝐹𝑐(𝑥, 𝑁) =
1

𝑁!
∑(−1)𝑘 (

𝑁
𝑘
) (𝑥 − 𝑘)𝑁−1𝑢(𝑥 − 𝑘)

𝑁

𝑘=0

. (13) 

The distribution of the sum has mean 𝑚𝑐 = 𝑁/2 and variance 𝜎𝑐
2 = 𝑁/12. A zero-mean, unit-

variance variate can be created by scaling and shifting the sum, 

The resultant pdf and cdf are 

 
𝑝𝑛𝑐(𝑥, 𝑁) =

1

𝜎𝑐
𝑝𝑐(𝜎𝑐𝑥 +𝑚𝑐 , 𝑁),

𝐹𝑛𝑐(𝑛, 𝑁) = 𝐹𝑐(𝜎𝑐𝑥 +𝑚𝑐 , 𝑁)

 (15) 

The Berry-Esseen Theorem [5] bounds the rate of convergence to a Gaussian distribu-

tion. For the sum of 𝑁 zero-mean uniform variates, the between the cdf of the sum and the 

Gaussian cdf (denoted as 𝒩(𝑥)), is bounded as, 

 |𝐹𝑛𝑐(𝑥, 𝑁) −𝒩(𝑥)| <
𝐶𝜌𝑢𝑐

𝜎𝑢𝑐
3 √𝑁

, (16) 

where 𝜌𝑢𝑐 is the third absolute central-moment.1 Feller [5] gives 𝐶 = 3 as the constant.2 The 

Berry-Esseen Theorem shows that the error bound decreases as 1/√𝑁. However, for practical 

values of 𝑁, the actual deviation for the sum of uniform variates is much smaller than this 

bound. 

Fig. 1 shows a plot of the pdf 𝑝𝑛𝑐(𝑥, 𝑁) for 𝑁 = 12, along with a Gaussian pdf. The tails of 

𝑝𝑛𝑐(𝑥, 𝑁) extend from the mean out to ±√3𝑁 and are zero beyond that point. For instance, for 

𝑁 = 12, the tails extend out to ±6 standard deviations. 

Since the area under any pdf is fixed at unity, the pdf of the sum must oscillate about the 

pdf of the true Gaussian density. The difference between the true Gaussian density and the pdf 

of the sum for different values of 𝑁 is plotted in Fig. 2. 

                                                             

 

1 For the uniform distributions used here, 𝜎𝑢𝑐
2 = 1/12 and 𝜌𝑢𝑐 = 1/32. 

2 Recent work on refining the value of the bounding constant 𝐶 has resulted 𝐶 < 0.4748, see [6]. 

 𝑥𝑛𝑐 =
𝑥𝑐 −𝑚𝑐

𝜎𝑐
. (14) 
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Warping the Output Values 

Warping the output value can reduce the error in the pdf. Consider a polynomial function 

applied to the sum variable 𝑥𝑐, 

 𝑦𝑛𝑐 =∑𝑎𝑖𝑥𝑛𝑐
𝑖

𝑁𝑐

𝑖=0

. (17) 

For 𝑁 = 12, an anti-symmetric warping polynomial (with only odd-numbered coefficients) is 

[7, Section 26.8], 

 
Fig. 1  Probability density function for a sum of 𝑁 = 12 uniform variates. 

 
Fig. 2  Difference between the Gaussian pdf and the pdf of a sum uniform variates. 
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𝑎1 = 0.98746, 𝑎3 = 3.9439 × 10
−3,

𝑎5 = 7.474 × 10
−5, 𝑎7 = −5.102 × 10

−7,

𝑎9 = 1.141 × 10
−7.

 (18) 

This polynomial function is a non-linear stretch of the deviates with the effect of increasing 

the reach of the pdf – the tail now goes out to 8.26 standard deviations. The warping function 

improves the match to the Gaussian pdf. The improved match is shown in Fig. 2, but at the 

scale presented, the error is indistinguishable from the zero line – the largest error is 

1.4 × 10−5. 

Tail probabilities 

Fig. 3 shows a plot of the tail probability 1 − 𝐹𝑛𝑐(𝑥, 𝑁) for several values of 𝑁. The log 

scale shows the deviation of the tail probability from the true value. For 𝑁 = 12, the simple 

sum starts to deviate significantly from the true Gaussian probability above 4 standard devia-

tions. The warped sum improves considerably on the simple sum. 

 
Fig. 3  Tail probability for the sum of uniform variates. 

3.1.2 Sum of discrete uniform variates 

For discrete valued uniform variates, the sum is 
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 𝑆𝑑 = ∑ 𝑥𝑢𝑑[𝑘]

𝑁−1

𝑘=0

. (19) 

where 𝑥𝑢𝑑[𝑘] is the integer-valued uniform variate that is used to calculate 𝑥𝑑[𝑘]. For the fol-

lowing, assume that the uniform variate takes on equiprobable values in [0,𝑀 − 1]. The sum 

takes on values between 0 and 𝑁(𝑀 − 1). 

The uniform probability mass function can be written in terms of the difference between 

two discrete unit step functions, 

 𝑃𝑢𝑑[𝑛] =
1

𝑀
(𝑢[𝑛] − 𝑢[𝑛 −𝑀]). (20) 

where the discrete unit step function is defined as, 

 𝑢[𝑛] = {
1, 𝑛 ≥ 0,

0, elsewise.
 (21) 

The generating function (𝑧-transform) for 𝑃𝑢𝑑[𝑛] is 

 𝑋𝑢𝑑(𝑧) =
1

𝑀
 
1 − 𝑧−𝑀

1 − 𝑧−1
. (22) 

The probability mass function of the sum corresponds to the following 𝑧-transform, 

 

𝑋𝑑(𝑧, 𝑁) =
(1 − 𝑧−𝑀)𝑁

(𝑀 − 1)𝑁(1 − 𝑧−1)𝑁
,

=
1

𝑀𝑁
∑(

𝑙 + 𝑁 − 1
𝑙

) 𝑧−𝑙∑(−1)𝑘
𝑁

𝑘=0

(
𝑁
𝑘
) 𝑧−𝑘𝑀

∞

𝑙=0

.

 (23) 

The inverse transform gives the probability that 𝑆𝑑 = 𝑛, 

 𝑃𝑑[𝑛] = 𝑃𝑟(𝑆𝑑 = 𝑛) =
1

𝑀𝑁
∑(−1)𝑘 (

𝑁
𝑘
) (
𝑛 − 𝑘𝑀 + 𝑁 − 1

𝑛 − 𝑘𝑀
)𝑢[𝑛 − 𝑘𝑀]

𝑁

𝑘=0

. (24) 

The probability mass function is symmetric (𝑃𝑑[𝑛] = 𝑃𝑑[𝑁(𝑀 − 1) − 𝑛]), finite length (zero 

outside of [0, 𝑁(𝑀 − 1)]), and sums to one. The number of sum terms in Eq. (24) is at most 

𝑁 + 1. The sum (before normalization) calculates the number of combinations of 𝑁 uniform 

variates that add to 𝑛. 

The cumulative probability can be calculated by summing 𝑃𝑑[𝑛] for 𝑛 running from−∞ to 

𝑛, or as the inverse transform of 𝑋𝑑(𝑧)/(1 − 𝑧
−1), 
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 𝐹𝑑[𝑛] = 𝑃𝑟(𝑆𝑑 ≤ 𝑛,𝑁) =
1

𝑀𝑁
∑(−1)𝑘 (

𝑁
𝑘
) (
𝑛 − 𝑘𝑀 +𝑁
𝑛 − 𝑘𝑀

)𝑢[𝑛 − 𝑘𝑀]

𝑁

𝑘=0

. (25) 

The cdf, 𝑃𝑟(𝑆𝑑 ≤ ⌊𝑥⌋,𝑁), is a piecewise constant, non-decreasing function. 

The total number of combinations (𝑀𝑁) becomes enormous for practical values of 𝑀 and 

𝑁 (say 𝑀 = 231 and 𝑁 = 12). Even for such cases, the end values of the probability mass func-

tion (before normalization by 𝑀𝑁) can be determined exactly with, say, 64-bit arithmetic. 

The analysis above was done for the sum of integer-valued variates, with the variates tak-

ing on values [0,𝑀 − 1]. The case of uniform variates in [1,𝑀 − 1] requires replacing 𝑀 by 

𝑀 − 1 and noting that the smallest sum with non-zero probability is now 𝑁. 

3.2 Transformation of Variables 

Consider a two-dimensional Gaussian variable with independent identically-distributed 

components. When plotted in two dimensions, the radial distance to the value has a Rayleigh 

distribution, and the angle is uniformly distributed between 0 and 2𝜋. In the polar transfor-

mation method for generating Gaussian variates, one uniform variate is transformed to a Ray-

leigh variate and a second uniform variate is transformed to a uniform angle. Two Gaussian 

variates, 𝑦1and 𝑦2 are formed as 

 
𝑦1 = √−2 log(𝑥1) cos(2𝜋𝑥2),

𝑦2 = √−2 log(𝑥1) sin(2𝜋𝑥2) .
 (26) 

An accept-reject approach can be used to obviate the need for calculating the sinusoid values 

[3]. However, the number of iterations to attain an acceptance is unbounded, although small 

on average. 

3.2.1 Polar transformation of discrete uniform variates 

Consider the discrete uniform variates with values between 1/𝑀 and (𝑀 − 1)/𝑀, see Eq. 

(5). The number of distinct values for, say 𝑦1, is (𝑀 − 1)2 − the product of the number of dif-

ferent cosine values and the number of different Rayleigh values. The cosine and sine terms in 

the transformation are always bounded by unity. The Rayleigh term determines the range of 

the output variates. The largest possible value for the Rayleigh term is √−2 log(1/𝑀). This 

also bounds the largest Gaussian variate. For 𝑀 = 231 − 1, the largest value corresponds to 

6.56 standard deviations. 
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A plot of the tail probability for the Rayleigh term (discrete values), Fig. 4, shows the de-

viation from the true distribution increases above 6 standard deviations. 

 
Fig. 4  Tail probability for a transformation of discrete uniform variates to a Ray-

leigh distribution. 

3.3 CLT versus Polar Transformation 

The Central Limit Theorem approach and the polar transformation method provide 

Gaussian variates in quite different ways. In the basic CLT approach, the discrete output values 

are uniformly spaced, but the probability masses for the output points differ. The cdf consists 

of steps, uniformly spaced in 𝑥, but with heights proportional to the probability masses. In the 

transformation method, the discrete output values for the Rayleigh component are non-uni-

formly spaced. The pdf is discrete with equal masses (1/(𝑀 − 1)) for the non-uniformly 

spaced values. The cdf consists of steps, non-uniformly spaced in 𝑥, but all of the same height. 

The CLT approach is simple to program but is approximate. The most significant draw-

back for some applications is the poor approximation of the tails of the Gaussian distribution. 

The question of how well the tails have to be modelled is discussed in Appendix A. The polar 

transformation method matches the Gaussian distribution better in the tails, though the maxi-

mum value is still limited. It also requires the calculation of transcendental functions. 
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4 Gaussian Probability Density: Piecewise Linear Approximation 

Another approach to generating an arbitrary probability density function is based on the 

observation that any pdf can be written in the following form 

 𝑝𝑠(𝑥) = ∑ 𝑞𝑖 𝑝𝑖(𝑥)

𝑁−1

𝑖=0

. (27) 

With this formulation, the overall pdf is expressed as the weighted sum of pdf’s. The mixture 

weight 𝑞𝑖 is the probability of choosing the pdf 𝑝𝑖(𝑥). 

This approach can be used to approximate the Gaussian density. The goal is to produce an 

algorithm that can be coded in a program that is regular and simple (like the basic CLT ap-

proach), that does not use transcendental functions, but that has a smaller approximation er-

ror than the CLT approach. 

4.1 Piecewise Linear Approximation using Triangular Distributions 

First, note that a triangular pdf can be generated as the sum of two uniform pdf’s. By 

overlapping the triangular distributions, the overall pdf has piecewise linear segments. Fig. 5 

shows a (low resolution) triangular approximation to the Gaussian density. The steps in gen-

erating the (approximate) Gaussian variate are as follows. 

 
Fig. 5  Triangular pdfs used to approximate a Gaussian density. 

 

1. Determine which triangular pdf to use – select 𝑝𝑖(𝑥) with probability 𝑞𝑖. 
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2. Generate a sample from 𝑝𝑖(𝑥). This pdf is a shifted and scaled triangular pdf. 

For the first task, we want to randomly generate a discrete index, say 𝑖, where the index 

occurs with probability, 𝑞𝑖. Starting from a uniform variate, the straightforward approach is to 

set up thresholds that divide the unit interval into 𝑁 segments, each of length equal to one of 

the given probabilities. A binary search can be used to limit the number of comparisons to at 

most ⌈log2(𝑁⌉. 

4.1.1 Method of Aliases 

To generate the index 𝑖, the method of aliases is used. In this procedure, the segments are 

rearranged so as to allow a correctly distributed index value to be determined with a few sim-

ple operations. This method is reviewed and interpreted in Appendix B. 

4.1.2 Generalization of the triangular distribution 

The piecewise linear approximation shown above uses equal width triangular sub-distri-

butions. The variates for the individual triangular sub-distributions can be generated a sum of 

two independent uniform variates. 

A procedure to generate a variate with non-symmetric triangular pdf is described in Ap-

pendix C. Let 𝑢1 and 𝑢2 be two uniform variates. Form the sum,3 

 𝑠 = (1 − 𝛼) min(𝑢1, 𝑢2) + 𝛼 max(𝑢1, 𝑢2). (28) 

The sum has a triangular pdf in the interval [0, 1] with the apex of the triangle at 𝛼. For 𝛼 =

1/2, the pdf of the sum is symmetric about 𝛼. Using non-symmetric triangles allows for the 

piecewise linear approximation to use variable length segments. 

4.2 Choosing the Model Parameters 

Consider a piecewise linear approximation, anchored at the 𝑁 values 𝑥𝑡(𝑖), for 𝑖 =

1,… ,𝑁. Each value 𝑥𝑡(𝑖) value locates the apex of a triangle with base extending from 𝑥(𝑖 − 1) 

to 𝑥(𝑖 + 1). The 𝑥𝑡(⋅) vector is extended with 𝑥𝑡(0) and 𝑥𝑡(𝑁 + 1) to specify the ends of the 

                                                             

 

3 This method for generating a non-symmetric triangular pdf appears in [1], without attribution or 

proof, and has been independently described in [8]. 
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first and last triangles. The 𝑥𝑡(⋅) values will be referred to as the anchor points of the piece-

wise linear approximation. 

Let the 𝑥𝑡(⋅) values be symmetric about zero (𝑥𝑡(𝑖) = −𝑥𝑡(𝑁 + 1 − 𝑖)) and let 𝑁 be odd 

so that 𝑥𝑡((𝑁 + 1) 2⁄ ) = 0. Further, let outermost triangles have apices at ±𝐶max. 

The modelling of the Gaussian pdf with linear segments involves choosing parameters for 

the model (𝑥𝑡(⋅) and 𝑞(⋅)). For motivation, suppose the probabilities of the sub-distributions 

are chosen so that at the anchor points, the approximation equals the true Gaussian distribu-

tion. (This cannot occur exactly, since we have to respect the constraint that the area under the 

approximating function must be unity.). Triangular distribution 𝑖 has a base width of 𝑤𝑖 =

𝑥𝑡(𝑖 + 1) − 𝑥𝑡(𝑖 − 1) and apex at 𝑥𝑡(𝑖). In the overall approximation, the triangular pdf i is 

scaled by the probability 𝑞𝑖. Then to have the approximating pdf equal that of a Gaussian at 𝑐𝑖 , 

 𝑞𝑖 =
𝑤𝑖
2
𝑝𝑔(𝑥𝑡(𝑖)). (29) 

where 𝑝𝑔(𝑥) is the Gaussian probability density. 

4.3 Optimizing the Model Parameters 

Consider approximating the Gaussian density with 𝑁 mixture probabilities. We will mini-

mize the sum of the squared deviations at a set of points. Let the points be written in vector 

form as 

 𝐱 = [𝑥0, 𝑥1, … , 𝑥𝑁𝑥−1 ]. (30) 

The pdf evaluated at 𝐱 can be written as 

 𝐩(𝐱) = 𝐀(𝐱)𝐪. (31) 

where 𝐀(𝐱) is an 𝑁𝑥 ×𝑁 matrix with elements 𝑝𝑗(𝑥𝑖) (the pdf of sub-distribution 𝑗 evaluated 

at 𝑥𝑖) and 𝑞 = [𝑞0, … , 𝑞𝑁−1]
𝑇 is the vector of mixture probabilities. The approximating error 

can then be written as 

 𝐞(𝐱) = 𝐩𝑔(𝐱) − 𝐀(𝐱)𝐪, (32) 

where 𝐩𝑔(𝐱) is the Gaussian pdf evaluated at 𝐱. The sum of squared errors is 𝐞(𝐱)𝑇𝐞(𝐱). This 

will be minimized with respect to the choice of 𝐪, with the constraint that the probabilities 

sum to unity. This constraint is added to the squared error with a Lagrange multiplier 𝜆. Sup-

pressing the dependence on 𝐱, the function to be minimized is 



Generating Gaussian Pseudo-Random Variates 13 

 

 𝜀 = 𝐩𝑔
𝑇𝐩𝑔 − 2𝐩𝑔

𝑇𝐀𝐪 + 𝐪𝑇𝐀𝑇𝐀𝐪 + 𝜆(1 − 𝟏𝑁
𝑇𝐪), (33) 

where 𝟏𝑁 is a vector of 𝑁 ones. Taking a derivative with respect to 𝐪 and setting this to zero 

gives us a set of equations with 𝑁 + 1 unknowns, 

 𝐀𝑇𝐀𝐪 = 𝐀𝑇𝐩𝑔 −
𝜆

2
𝟏𝑁 . (34) 

The additional equation is the constraint equation 𝟏𝑁
𝑇𝐪 = 1. Now writing the combined equa-

tions, 

 [
𝐀𝑇𝐀 𝟏𝑁/2

𝟏𝑁
𝑇 0

] [
𝐪

𝜆
] = [

𝐀𝑇𝐩𝑔

1
]. (35) 

The constraint guarantees only that the sum of the probabilities is one, not that they are posi-

tive. 

Because of the concavity/convexity of the Gaussian curve, the maximum error will occur 

near the middle of the linear segments. The sampling vector 𝐱 is chosen to include the anchor 

points and the points mid-way between the anchor points.  

4.3.1 Error Weighting 

The procedure above minimizes the unweighted mean-square error. As such the error in 

the middle region dominates the error in the tails. For instance, the mixture probabilities in 

the outer reaches of the approximation can be set to zero without incurring a large change in 

the overall mean-square error. The relative importance of the mid-region and the tails can be 

changed with a weighting matrix. Let the weighting matrix be an 𝑁𝑥 × 𝑁𝑥 diagonal matrix 𝐖. 

The error then is 

 
𝐞 = 𝐖(𝐩𝑔 − 𝐀𝐪),

= 𝐩𝑔𝑤 − 𝐀𝑤𝐪.
 (36) 

The rest of the algorithm proceeds as before using the weighted matrix and weighted Gauss-

ian pdf vector. 

One possible weighting has the diagonal elements of 𝐖 set as follows, 

 𝑊𝑖𝑖 = (
1

𝑝𝑔(𝑥𝑡(𝑖))
)

𝑤𝑥

. (37) 

The weight values are constant when 𝑤𝑥 = 0. The error criterion becomes a relative weighting 

when 𝑤𝑥 = 1. 
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A Matlab implementation of the procedure to find the mixture probabilities 𝐪 is shown in 

Appendix D. 

4.4 Uniformly-Spaced Anchor Points 

The case of uniformly-spaced symmetric triangles gives uniformly spaced anchor points  

𝑥𝑡(⋅). The specification of the triangles is completed by specifying 𝑁 and 𝐶max (centre of the 

outermost triangle). The Gaussian density is concave downward for 𝑥 < 1 and concave up-

ward for 𝑥 > 1. For our example implementation, the anchor points are chosen so that one lies 

at the mean and two lie at ±1 (standard deviations). 

For an example implementation we have chosen to go out to 6 standard deviations, with 

different numbers of approximating segments. It was found that for uniformly-spaced anchor 

points, the approximation error is not strongly dependent on the weighting. The weight pa-

rameter was set to 𝑤𝑥 = 0.5. 

The approximation error for 𝑁 = 61 (anchor points separated by 0.2) is shown in Fig. 6. 

The peak error is smaller than for the central-limit theorem approach (see Fig. 2). The tail 

probabilities for the approximation are shown in Fig. 7. In this case, the approximation ex-

tends to ±6. The tail probabilities are more accurate than the CLT approach (c.f. Fig. 3). 

The peak error depends on the choice of 𝑁. The peak error decreases with increasing 𝑁 

as shown in the upper curve in Fig. 8. 

 
Fig. 6  Difference between the Gaussian density and the piecewise linear approxi-

mation for 61 uniformly-spaced anchor points. 



Generating Gaussian Pseudo-Random Variates 15 

 

 

 
Fig. 7  Tail Probability for a piecewise linear uniformly-spaced approximation. 

 
Fig. 8  Peak error in the pdf as a function of 𝑁. 
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Geometrically-Spaced Anchor Points 

With uniformly-spaced anchor points, the error in pdf is largest near the origin. Using an-

chor points which are smaller near the origin can be a benefit. Let the spacing between anchor 

points increase geometrically on either side of the origin. The geometric spacing will be speci-

fied by 𝑅, the ratio of the largest spacing to smallest spacing. 

With a constant weight (𝑤𝑥 = 0), experimentation using 𝑁 = 61, shows that a geometri-

cally-increasing spacing with 𝑅 = 2.8 brings down the error near the origin, but at the expense 

of more error in the tail. Solving for the mixture probabilities using the method described in 

§4.2 gives negative values for the probabilities of the outermost sub-distributions. Instead, an 

alternate solution method as shown in Appendix D was used with the mixture probabilities are 

constrained to be non-negative. 

Using a weighting with 𝑤𝑥 = 0.5, the procedure given in §4.2 gives mixture probabilities 

are positive and the tail is well represented. Fig. 9 shows the error in pdf. The geometric spac-

ing has brought down the maximum error by about a factor of 2.5. The tail probabilities are 

shown in Fig. 7. The maximum error in the pdf approximation as a function of 𝑁 is shown in the 

lower curve in Fig. 8 (𝑅 = 2.8 and 𝑤𝑥 = 0.5). 

 
Fig. 9  Difference between the Gaussian density and the piecewise linear approxi-

mation for 61 geometrically spaced anchor points. 
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4.5 Execution Time 

The computer code for generating a piecewise linear approximation of any pdf is simple. 

The modelling of a particular pdf changes only the tabulated values. The accuracy of the ap-

proximation depends on the number of sub-distributions used.4 This affects only the table 

sizes and not the speed of execution. C-language routines were implemented to assess the 

speed of execution. Appendix E.1 shows the code for the piecewise linear algorithm with uni-

formly-spaced anchor points. 

The use of non-uniformly-spaced intervals requires an additional table (the 𝑥𝑡(⋅) values) 

and additional logic to implement the non-symmetric triangular pdf’s. The C-language imple-

mentation is shown in Appendix E.2 

Tests were run on a 3.4 GHz PC to measure the execution times. The average execution 

times for generating one random deviate are shown in Table 1. The first row is for the uniform 

random number generator ran1 (multiplicative congruential, with shuffle) from [3]. This is the 

basic uniform random generator used by all of the Gaussian generators. The first Gaussian 

random number generator is gasdev, the implementation of the polar transformation method 

from [3]. The next is the sum of 12 uniform deviates (CLT method). The last two rows are for 

piecewise linear approximations. 

                                                             

 

4 The mixture probabilities decrease as the number of sub-divisions increases. As noted in Appen-

dix B.3, the resolution of the uniform deviates may have to be increased when individual mixture proba-

bilities become small. 

Table 1  Execution times for random number generators 

Type Routine 
Execution Time 

ns 

Uniform ran1 5.3 

Gaussian gasdev 21.1 

Gaussian CLT (𝑁 = 12) 60.9 

Gaussian 
Piecewise Linear 
Uniformly-Spaced 

21.2 

Gaussian 
Piecewise Linear 

Non-Uniformly-Spaced 
28.9 
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The polar transformation method (gasdev) calls the uniform generator only once per 

output value on average. Somewhat surprisingly in spite of having to invoke a square root and 

a logarithm, it runs only about 4 times slower than the uniform generator. This is perhaps a 

tribute to the efficient implementation of the transcendental functions in the C-language li-

brary. 

The CLT method calls the uniform random number generator 12 times and runs about 12 

times slower than the uniform generator. 

The piecewise linear approximations call the uniform generator 3 times. For uniformly-

spaced anchor points, the code is about 4 times slower than the uniform random number gen-

erator. For non-uniformly-spaced anchor points, the additional computations result in code 

that runs 5.5 times slower than the uniform generator. 

4.6 Portability and Fixed-Point Considerations 

An implementation in high-level language is portable if it assumes minimal constraints 

on the underlying computer architecture. The underlying discrete uniform random number 

generator can easily be made portable [3]. The piecewise linear approximation step is table-

driven, memoryless, and very portable. 

A portable routine will not necessarily be bit-exact between different compilers even on 

the same architecture. For bit-exact implementations, we consider a fixed-point implementa-

tion. The core of the uniform generator is already implemented in fixed-point arithmetic. The  

piecewise linear approach can also be implemented in fixed-point arithmetic, giving a scaled 

fixed-point output value. Furthermore. as noted in Appendix B the table sizes set to be a 

power of 2, further simplifying the fixed-point implementation on binary computers. 

4.7 Rectangle-Wedge-Tail Method 

A related approach for generating Gaussian variates is the rectangle-wedge-tail method; 

see for instance [2]. In this approach, the area under the Gaussian pdf is partitioned into rec-

tangular regions, wedge-shaped regions, and the tail. In a suggested implementation, the 

method of aliases is used to determine which one of 64 sub-distributions to use. 

The rectangular regions are generated by a scaled and shifted uniform variate. The 

wedge-shaped regions are generated by an accept-reject approach using two uniform variates. 

However, since most of the area is covered with rectangular regions, the more complicated 
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wedge-shaped regions are needed only a small fraction of the time (about 8% of the time in 

the example given by Knuth [2]). The number of iterations in the accept-reject approach is un-

bounded. The rectangle-wedge-tail method is computationally efficient on the average. The 

overall program is much more complicated than the other methods considered here. 

5 Summary and Conclusions 

The piecewise linear approximation method for generating Gaussian variates is simple in 

structure, has a constant workload, and does not need transcendental functions (problematic 

in fixed-point implementations). The results show that it is a viable option for implementa-

tion: it is both efficient and accurate. There is a straightforward trade-off between memory 

(table sizes) and accuracy with no effect of execution time. This method is an excellent candi-

date for a portable (and possibly fixed-point, bit-exact) implementation of a Gaussian pseudo-

random number generator. 
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Appendix A How Far Should the Tails Reach? 

The methods for generating Gaussian random variates necessarily generate distributions 

that are thin in the tails. This by itself does not necessarily hinder their usefulness. We will 

consider two scenarios. 

Audio Noise 

Consider generating white noise to add to an audio signal, for instance for testing noise 

reduction schemes or assessing the performance of speech or audio coding systems. For such 

purposes, the absence of large (but small probability) noise samples is not a deficiency. 

As a concrete example, consider the Gaussian random number generated used in the 

Modulated Noise Reference Unit (MNRU) [9] to add multiplicative noise for speech quality as-

sessments. Major requirements for a reference implementation are that the random number 

generator be accurate and portable. The Gaussian noise generator suggested in [10] is table 

driven. For each output noise sample, eight randomly chosen values from a fixed table of 8192 

Gaussian values are combined to generate each output noise sample. This leads to a huge 

number of different possible output values, but the range of values is limited by the initial val-

ues used to populate the table. This is an example of an application where tail accuracy is not a 

prime concern. 

Communications System Simulation 

In communication system simulation, the tail probabilities of the noise determine the er-

ror rates. Consider a simulation system in which errors occur with the (true) probability 𝑝. 

Further consider evaluating 𝑛 symbols passing through the system, with the probability of er-

ror being independent from symbol to symbol. The probability of 𝑘 errors in 𝑛 trials follows a 

binomial distribution [4], 

 𝑃(𝑘) = (
𝑛
𝑘
) 𝑝𝑘(1 − 𝑝)𝑛−𝑘  . (38) 

The mean number of errors for 𝑛 trials is 𝑝𝑛 and the variance is 

 𝜎2 =
𝑝(1 − 𝑝)

𝑛
. (39) 

The ratio of the standard deviation relative to the mean value is 
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𝜎

𝑝
= √

1 − 𝑝

𝑛𝑝
≈

1

√𝑛𝑝
. (40) 

The latter approximation is for small probability of error. To get an error estimate that has 

standard deviation that is 10% of the expected number of errors, the expected number of er-

rors (𝑛𝑝) should be 100. This means that to simulate a system with an error probability of 

10−6, the number of trials should be on the order of 108. For a simulation of a complicated 

system, this number of trials may be unreasonably large. This then limits the smallest proba-

bility of error that can be simulated. 

For binary transmission with additive Gaussian noise, the error rate is 

 𝑃𝑒 = 𝑄(√𝜌). (41) 

where 𝑄(𝑥) is the tail probability for a Gaussian density and 𝜌 is the signal-to-noise ratio. In 

simulating this (admittedly simple) system operating at an error rate of 10−6, errors occur 

when the noise exceeds 4.7 standard deviations. Simulation of this system operating at this er-

ror rate would require generation of Gaussian deviates that extend well beyond this value. This 

then sets the accuracy requirements for the tails. The total probability of the tails is 10−6 . To 

bring the neglected probabilities below 1% of this value requires that the tails be accurate to 

about 5.6 standard deviations. 
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Appendix B Method of Aliases for Generating Discrete Distributions 

B.1 Partitioning a Square 

Given a uniform random number generator (0 to 1), consider the generation of 𝑁 random 

values with given probabilities, 𝑞0, … , 𝑞𝑁−1 . The alias method of Walker [11], trades off the 

non-uniform quantization problem for a uniform quantization problem and additional com-

parison. Devroye [12] has an interpretation of the problem in terms of partitioning a unit 

square. 

A unit square is shown in Fig. 10. The square is partitioned into vertical strips, each of 

area 1/𝑁. Each strip is divided into two parts, with the lower part of strip 𝑗 having area 𝑄𝑗/𝑁. 

The index associated with the lower part is 𝑗. The index associated with he upper part of strip 

𝑗 is 𝐼𝑗. 

The generation of the discrete variable can then be done as follows. Generate two uni-

form random deviates, 𝑢 and 𝑣. These define a point [𝑢, 𝑣] in the unit square. To locate the 

strip, uniformly quantize 𝑢, 

 𝑗 = ⌊𝑁𝑢⌋. (42) 

 
Fig. 10  Unit square partitioned into vertical strips of area 1/𝑁.. 

In strip 𝑗, we need to determine whether 𝑣 is below or above the dividing line, 

 𝑙 = {
𝑗, 𝑣 < 𝑄𝑗,

𝐼𝑗 , 𝑣 ≥  𝑄𝑗 .
 (43) 

... ...

0 1 j N-2 N-1... ...

0 1 j N-2 N-1

I0 I1 Ij IN-2 IN-1... ...

Q0 Q1 Qj QN-2 QN-1

1-Q0 1-Q1 1-Qj 1-QN-2 1-QN-1

1/N

1



Generating Gaussian Pseudo-Random Variates 24 

 

When properly set-up, the index 𝑙 will take on the value 𝑖 with probability 𝑄𝑖 . 

The task is to construct the partitions of the table. First note that some of the probabili-

ties 𝑞𝑖 will be less than 1/𝑁, while others will be greater than or equal to1/𝑁. Group the prob-

abilities into two groups, those probabilities that are less than 1/𝑁, and the remainder. Choose 

one from the group of smaller probabilities, say 𝑞𝑗. In strip 𝑗, set 𝑄𝑗 = 𝑞𝑗 . Since 𝑞𝑗 is smaller 

than 1/𝑁, it will take up only part of strip 𝑗. The index of the lower part of strip 𝑗 is set to 𝑗 it-

self. We are now finished with 𝑞𝑗. 

Now select one of the probabilities that is larger than 1/𝑁, say 𝑞𝑚. The length of the up-

per part of strip 𝑗, is smaller than this value. Nonetheless, we label the upper part of strip 𝑗 

with index 𝑚, i.e., set 𝐼𝑗 = 𝑚. One strip is filled. Now reduce 𝑞𝑚 by the length of the upper part 

of strip 𝑗, 

 𝑞𝑚 ← 𝑞𝑚 − (1 − 𝑞𝑗). (44) 

Having done this, place the new value of 𝑞𝑚 into one of the two groups of probabilities: those 

smaller than 1/𝑁 or those larger than 1/𝑁. 

The process can now be repeated for the remaining strips. When finished, each part of 

the unit square will be identified with an index. A given index 𝑖 may occur in several different 

parts of the square, but the fraction of the square labelled with index 𝑖 will be exactly 𝑞𝑖. 

The procedure above was described in terms of generating two uniform random varia-

bles. One can note, however, that 𝑘 = ⌊𝑁𝑢⌋ is a discrete equiprobable value and that 𝑣 = 𝑁𝑢 −

𝑘 is a uniform random value in [0, 1]. Then we can operate with just a single uniform random 

deviate. 

B.2 Dividing up a Line 

This single uniform deviate approach can be viewed in terms of a line from 0 to 𝑁 as 

shown in Fig. 11. In this figure, the strips from the previous figure are concatenated. The uni-

form deviate chooses a point on the line. The integer part of the uniform deviate selects a unit-

length segment. The threshold value for the unit segment starting at 𝑗 is 𝑗 + 𝑄𝑗. 

 
Fig. 11  Line segment divided into unit length segments. 

0 1 2 j j+1 N-1 NQ0 1+Q1 j+Qj N-1+QN-1

I00 IjjI11 IN-1N-1... ...
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The random variate generation algorithm is implemented as part of the code shown in 

Appendix E. The input is 𝑢, a uniform random variate. Two tables of size 𝑁 are necessary. The 

first contains the threshold values 𝑖 + 𝑁𝑄𝑖 . The second is the index array containing the indi-

ces for the second parts of the unit segments. 

The description above gives an explicit method to generate the tables. Knuth [2] de-

scribes a modified procedure for setting up the tables. This method sorts the probabilities 

such that the indices of the smallest probability and largest probabilities are used to populate 

a strip at any step. In this way, it attempts to maximize the probability that 𝑣 < 𝑄𝑗  (no table 

lookup for the index aliases). A procedure written in Matlab for generating the table values is 

shown below in Fig. 12. The input is a vector of probabilities. The output is a table of thresh-

olds (𝑖 + 𝑁𝑄𝑖) and a table of index aliases. 

function [Qp, It] = AliasTable(q) 
  
Pn = q; 
N = length(q); 
  
Qp = zeros(1, N);       % pre-allocate space 
It = zeros(1, N); 
for i = 0:N-1 
  [~, Is] = sort(Pn);   % ascending order 
  Is = Is - 1;          % [0, N-1] 
  j = Is(i+1);          % j, smallest Pn >= 0 
  k = Is(N-1+1);        % k, largest Pn 
  
% Set table values 
  Qp(j+1) = j + N * Pn(j+1); 
  It(j+1) = k;          % [0, N-1] 
  
% Update probabilities 
  Pn(k+1) = Pn(k+1) - (1/N - Pn(j+1)); 
  Pn(j+1) = -1;         % Finished with Pn(j+1) 
end 
  
end 

Fig. 12  Matlab code for generating alias table values. 

B.3 Using Discrete Uniform Variates 

Consider generating a discrete variate 𝑖 with a probability 𝑞𝑖 using a discrete uniform 

variate. Let uniform variate occur in steps of 1/𝑀. The variate 𝑣 = 𝑁𝑢 − [𝑁𝑢] has steps of size 

𝑁/𝑀. If 𝑞𝑖 is less than 𝑁/𝑀, the index 𝑖 will occur with probability 0 or 𝑁/𝑀. As an example, if 

𝑁 = 64 and 𝑀 = 231, 𝑁/𝑀 is about 3 × 10−8. For 𝑞𝑖 values smaller than some multiple of 
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𝑁/𝑀, the probability of index 𝑖 may not be accurate. These considerations suggest the use of a 

discrete uniform random number generator with a large 𝑀. 

B.4 Other Considerations 

The alias method requires a multiplication by the table size and the evaluation of a floor 

function (integer part of a positive number). For computer architectures based on binary 

arithmetic, these operations can be simplified if the table size is a power of 2. This can be ac-

commodated by introducing additional sub-distributions with zero probability. 

B.5 Application to Quantization 

The alias method generates indices with given probabilities. It is an alternate to a binary 

search. The latter algorithm can be viewed as implementing a non-uniform quantizer. In gen-

erating random indices, it matters not which index some particular range of the uniform vari-

ate is associated with, only that the indices occur with the correct probability. 

In the non-uniform quantization problem, the goal is to find the index corresponding to 

an input value. Non-uniform quantizers can be implemented with a transformation to a do-

main in which a uniform quantizer can be used (a companding function). Or barring that, us-

ing a binary search. The one-dimensional view of the alias method gives us an alternate ap-

proach. 

Consider for simplicity, the problem of quantizing a value 𝑥 taking on values in the inter-

val [0, 1]. This interval is then partitioned into segments with labelled indices. Let the smallest 

interval between quantizer decision boundaries be Δmin. Choose 𝑁 such that 𝑁Δmin ≥ 1 and 

scale the interval [0, 1] by 𝑁. No segment of unit length of the scaled interval will contain more 

than one decision boundary. We can now use the processing of the alias method to set up two 

tables. The first table has thresholds for each unit interval. The second table maps the interval 

below each threshold to a quantization index. Any value above the threshold will be mapped 

to next quantization index. Non-uniform quantization is implemented by first identifying the 

unit segment and then comparing the value with the threshold for that segment to determine 

the quantization index. 

For non-uniform quantizers with a large spread in interval sizes, a non-linear function 

can be used to decrease the spread. The function need not be exactly the companding function 
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associated with the non-uniform quantizer – it serves only to reduce the number of intervals 

(table size). 
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Appendix C General Triangular Probability Density 

C.1 Minimum and Maximum Order Statistics 

A variate with a symmetric triangular pdf can be generated by adding two uniform vari-

ates. A non-symmetric can be formed with a scaled addition of the maximum and minimum of 

the two uniform variates. This can be shown as follows. 

The properties of order statistics are described in [13]. For 𝑁 random variables, the order 

statistics are the sorted values, 

 𝑥(1) ≤ 𝑥(2) ≤ ⋯ ≤ 𝑥(𝑁). (45) 

Consider 𝑁 = 2. Then the order statistics are the minimum and maximum. For the special case 

of independent uniform variates (𝑢1 and 𝑢2), designate the order statistics as 𝑣1 and 𝑣2. These 

have joint pdf [13], 

 𝑝12(𝑣1, 𝑣2) = {
2, 0 ≤ 𝑣1 ≤ 𝑣2 ≤ 1,

0, otherwise.
 (46) 

The joint probability is uniform in the triangular region. Alternately, the limits can be ex-

pressed with unit step functions 

 𝑝𝑣1𝑣2(𝑣1, 𝑣2 ) = 2 I(𝑣1, 𝑣2),. (47) 

where the indicator function is  

 I(𝑥, 𝑦) = [𝑢(𝑥) − 𝑢(𝑥 − 1)] [𝑢(𝑦) − 𝑢(𝑦 − 1)] 𝑢(𝑦 − 𝑥). (48) 

C.2 Sum of the Scaled Minimum and Maximum 

The goal is to find the pdf of the sum of scaled 𝑣1 and 𝑣2. This will be carried out in three 

steps: (i) scaling, (ii) transformation of variables to create the sum, and (iii) integrating out the 

unused variable. 

The scaled variables (𝛼 > 0 and 𝛽 > 0) are 

 
𝑤1 = 𝛽𝑣1,

𝑤2 = 𝛼𝑣2.
 (49) 

The joint pdf of 𝑤1 and 𝑤2 is 

 𝑝𝑤1𝑤2(𝑤1, 𝑤2) =
2

𝛼𝛽
I (
𝑤1
𝛽
,
𝑤2
𝛼
). (50) 
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The sum of the scaled variables is 𝑠 = 𝑤1 +𝑤2, with 0 ≤ 𝑠 ≤ 𝛼 + 𝛽, 

 𝑝𝑠𝑧(𝑠, 𝑤2) =
2

𝛼𝛽
I (
𝑠 − 𝑤2
𝛽

,
𝑤2
𝛼
). (51) 

Integrating out 𝑤2 in this expression will give the pdf of the scaled sum. The three terms of the 

indicator function determine the integration limits for 𝑤2, 

 

0 ≤
𝑠 − 𝑤2
𝛽

≤ 1  →   𝑠 − 𝛽 ≤ 𝑤2 ≤ 𝑠,

0 ≤
𝑤2
𝛼
≤ 1  →   0 ≤ 𝑤2 ≤ 𝛼,

𝑤2
𝛼
≥
𝑠 − 𝑤2
𝛽

  →   
𝛼𝑠

𝛼 + 𝛽
≤ 𝑤2.

 (52) 

The inequalities are plotted in Fig. 13 with the filled-in region representing 

 
𝛼𝑠

𝛼 + 𝛽
≤ 𝑤2 ≤ min (𝑠, 𝛼). (53) 

This figure is shown for 𝛼 < 𝛽, but the bounds on 𝑤2 are unchanged if 𝛽 ≥ 𝛼. 

The integration the gives 

 𝑝𝑠(𝑠) =

{
 
 

 
 
2

𝛼
 
𝑠

𝛼 + 𝛽
, 0 ≤ 𝑠 ≤ 𝛼,

2

𝛽
(1 −

𝑠

𝛼 + 𝛽
) , 𝛼 ≤ 𝑠 ≤ 𝛼 + 𝛽,

0, otherwise.

 (54) 

 

 
Fig. 13  Inequality regions. 
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The pdf 𝑝𝑠(𝑠) integrates to one. The probability density is triangular with a base width of 𝛼 +

𝛽 and peak at 𝑠 = 𝛼. 

Setting the base width to be constant at one and with 𝛽 = 1 − 𝛼, the sum can be written 

as 

 
𝑠 = (1 − 𝛼)𝑣1 + 𝛼𝑣2,

= (1 − 𝛼)min(𝑢1, 𝑢2) + 𝛼max(𝑢1, 𝑢2) .
 (55) 

The pdf of the sum is 

 𝑝𝑠(𝑠) =

{
 
 

 
 
2

𝛼
 𝑠, 0 ≤ 𝑠 ≤ 𝛼,

2

1 − 𝛼
(1 − 𝑠), 𝛼 ≤ 𝑠 ≤ 1,

0, otherwise.

 (56) 

If 𝛼 = 0 or 𝛼 = 1, the multivariate distribution 𝑝𝑠𝑧(𝑠, 𝑤2) is degenerate. For 𝛼 = 0, the distri-

bution of 𝑠 is that of the maximum order statistic; for 𝛼 = 1, the pdf is that of the minimum or-

der statistic. In Eq. (56) taking the limit of 𝑝𝑠(𝛼) as 𝛼 → 0 from above and the limit of 𝑝𝑠(𝛼) as 

𝛼 → 1, the results are consistent with the densities of the minimum and maximum order sta-

tistics. 

The sum of the scaled minimum and maximum values of Eq. (55), for independent uni-

form densities in [0, 1] has a triangular pdf. For 𝛼 = 0.5, 𝑠 = 0.5(𝑢1 + 𝑢2). The triangular den-

sities for different values of  𝛼 are plotted in Fig. 14. 

 
Fig. 14 Triangular pdf with changing 𝛼. 
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Appendix D Mixture Probabilities for the Piecewise Linear Approximation 

The figure below shows Matlab code that can be used to calculate the mixture probabili-

ties for a piecewise linear approximation to a Gaussian pdf. The routine qms sets up symmetric 

anchor points. It then calls the routine qopt to find the mixture probabilities. It also calculates 

the peak difference between the piecewise linear approximation and the true Gaussian pdf. 

The routine qopt finds mixture probabilities that minimize the mean-square difference 

between the piece-wise linear approximation and a target density. It first solves the linear 

equations that result with no constraint on the positiveness of the mixture probabilities. If any 

of the mixture probabilities is negative, it resorts to calling the Matlab routine lsqlin with the 

added constraint of positiveness.  

function [q, xt] = qms(N, Cmax, R, wx) 
% Solve for the mixture probabilities for a piecewise linear 
% approximation to a Gaussian pdf. 
% q    <-  Probabilities of the sub-distributions (N values) 
% xt   <-  Edges of the overlapping triangles (for N triangles, xt has 
%          Nt+2 values) 
% N     -> Number of triangles (odd number, at least 3) 
% Cmax  -> Largest peak location 
% R     -> Ratio of the largest to smallest distance between triangle 
%          peak locations 
% wx    -> Weight exponent 
% The triangle peaks are placed at [-Cmax, ..., 0, ..., Cmax]. The peak 
% locations are geometrically spaced. 
  
Gpdf = @(x) (1/sqrt(2*pi) * exp(-(x.^2) / 2)); 
  
% Generate geometrically spaced triangle points 
xt = GeoInc(N, R, Cmax); 
  
% mse evaluation points - column vector 
% - pdf at xt(1) and xt(end) is zero, and unaffected by q 
% - sample at xt and midway between xt values 
Nxt = length(xt); 
x = interp1(xt, 1.5:0.5:(Nxt-0.5))'; 
  
% Optimum q (minimizes weighted mse) 
A = Amat(x, xt); 
pg = Gpdf(x); 
W = diag(1 ./ (pg.^wx), 0); 
q = qopt(W * A, W * pg); 
  
% Check symmetry 
if (any(abs(q - flipud(q)) > 2e-16)) 
  error('q vector not sufficiently close to symmetric'); 
end 
  
Wmin = min(diff(xt(2:end-1))); 
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Wmax = max(diff(xt(2:end-1))); 
fprintf('N = %d, Spacing: [%.3f, ..., %.3f], Cmax = %g\n', ... 
         N, Wmin, Wmax, Cmax); 
fprintf('  R = %g, wx = %g\n', R, wx); 
  
% Find the peak error on a dense grid 
xe = interp1(xt, 1:0.05:Nxt); 
perr = Gpdf(xe) - PLApdf(xe, q, xt); 
fprintf('Max pdf error: %.3g\n', max(abs(perr))); 
  
end 
  
% ----- ----- 
function xt = GeoInc(N, R, Cmax) 
% Generate N+2 symmetric xt values 
% The ratio of the largest interval between triangle peaks to smallest 
% interval between peaks is R 
% triangle i (i = 1:N) 
%   xt(i), xt(i+1), xt(i+2), peak at xt(i+1) 
assert(N >= 3 && mod(N, 2) == 1); 
  
% Triangles for xt >= 0 
% Peak values   x  x   x    x  ...   x       x         x 
%               1  2   3    4  ...  M-2     M-1        M  
% xt            0                           Cmax 
% spacing        1   r  r^2    ...   r^(M-3)    r^(M-2) 
% Generate values with ratio of spacing r^n 
% M-1 spacings [1, r, r^2, ... , r^(M-3), r^(M-2)] 
Nxt = N + 2; 
M = (Nxt + 1) / 2; 
if (M <= 3) 
  r = 3; 
else 
  r = nthroot(R, M-3); 
end 
  
x = [0, cumsum(r.^(0:M-2))]; 
x = x * (Cmax / x(end-1));   % Normalize so x(end-1) = Cmax 
xt = [-fliplr(x(2:end)), x]; 
  
end 
  
% ----- ----- 
function p = PLApdf(x, q, xt) 
% Piecewise linear pdf formed from triangular sub-distributions. 
% p  <- Probability density function evaluated at x 
% x   -> Evaluation points 
% q   -> Probability of choosing sub-distribution j (column vector) 
% xt  -> Triangular pdf edges, sub-distribution j is a triangle defined by 
%        the points 
%          [xt(j), 0], [xt(j+1), q(i) 2 / W(j)], [xt(j+2), 0], 
%        where W(j) = xt(j+2) - xt(j). 
  
W = xt(3:end) - xt(1:end-2); 
ht = [0, 2 * q(:)' ./ W, 0]; 
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% Linear interpolation within xt, zero outside 
p = interp1(xt, ht, x, 'linear', 0); 
  
end 
 
% ----- ----- 
function A = Amat(x, xt) 
% Form the pdf mixture matrix A, where A(i,j) is the contribution 
% of sub-distribution ps(j) to the overall pdf at x(i). The 
% sub-distributions are triangular, defined by the three points 
%     [xt(j), 0], [xt(j+1), 2/W(j)], [xt(j+2), 0], 
% with W(j) = xt(j+2)-xt(j). 
% If the number of triangles is N, xt has length N+2. 
  
% The overall pdf is 
%   pa(x) = A(x)*q, 
% where q is a vector of mixture probabilities, with q(j) representing 
% the probability of using sub-distribution ps(j). 
%   A(i,j) = ps(x(i), xt(j:j+2)) 
N = length(xt) - 2; 
Nx = length(x); 
  
% Fill in matrix A 
A = zeros(Nx, N); 
for j = 1:N 
  % Define triangle values at xt(j), xt(j+1), xt(j+2) 
  hj = [0, 2/(xt(j+2) - xt(j)), 0]; 
  
  % Linear interpolation inside the triangle, zero outside 
  A(:,j) = interp1(xt(j:j+2), hj, x, 'linear', 0); 
end 
 
end 

Fig. 15  Matlab routine qms to calculate the mixture probabilities. 
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Fig. 16  Matlab routine qopt to calculate the mixture probabilities  

function q = qopt(A, p) 
% Solve for the mixture probabilities that minimize the sum of the 
% squared errors at given points. 
%  q <-  mixture probabilities 
%  A  -> Nx by N pdf mixture matrix; contribution to the overall pdf 
%        at point i from sub-distribution j 
%  p  -> Nx column vector of target pdf values 
  
% Solve for the q which minimizes the sum of squared errors. 
% The error is 
%   e(x) = p(x) - A(x)*q. 
% The sum of the squared errors is 
%   E = e'*e 
%     = p'*p - 2*p'*A*q + q'*A'*A*q.  
% Setting the derivative with respect to q to zero, gives the minimum 
% squared error solution, 
%   A'*A*qopt = A'*p. 
% However, the value of q must be normalized such that the total 
% probability is unity. This constraint is implemented with a Lagrange 
% multiplier, 
%   E = p'*p - 2*A'*p*q + q'*A'*A*q + u*(1 - S'*q), 
% where S is a vector of ones.  Setting the derivative with respect to 
% q to zero, 
%   A'*A*q + u*S*q/2 = A'*p. 
% Setting S'*q = 1, these can be combined into a single set of 
% equations, 
%   [ A'*A | S/2 ] [ q ]   [ A'*p ] 
%   [ --------   ] [ - ] = [ ---- ] . 
%   [   S' |  0  ] [ u ]   [   1  ] 
N = size(A, 2); 
S = ones(N, 1); 
qu = [[(A'*A); S'], [0.5*S; 0]] \ [A'*p; 1]; 
q = qu(1:N); 
  
if (any(q < 0)) 
  fprintf('*** Using lsqlin to avoid negative probabilities ***'); 
  % Find min(|Aq - p|^2) subject to sum(q(i))=1, q(i) >= 0 
  options = optimoptions('lsqlin', 'OptimalityTolerance', 1e-12); 
  q = lsqlin(A, p, [], [], S', 1, zeros(1, N), Inf(1, N), [], ... 
             options); 
end 
  
if (any(q < 0)) 
  error('Invalid (negative) probability'); 
end 
if (any(q == 0)) 
  warning('Some mixture probabilities are zero'); 
end 
if (abs(sum(q) - 1) > 1e-10) 
  error('Invalid probability sum'); 
end 
  
end 
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Appendix E Gaussian Variates from a Piecewise Linear Approximation 

E.1 Uniformly-Spaced Anchor Points 

Fig. 17 shows the C-language code for generating Gaussian variates using a piecewise lin-

ear approximation to the Gaussian pdf. The anchor points for the approximation are uniformly 

spaced (spacing 0.2). The smallest mixture probability is 7.4 × 10−8 at the outer sub-distribu-

tions. 

E.2 Geometrically-Spaced Anchor Points 

Fig. 18 shows the C-language code when the anchor points are geometrically-spaced. The 

smallest spacing between triangle apices is 0.114 on either side of the origin, increasing to 

0.319 at the ends. The ratio of the largest spacing to smallest spacing is 𝑅 = 2.8. 

The code for non-uniformly-spaced anchor points uses a table of the anchor points in ad-

dition to the tables for the alias method of selecting the mixture. 
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float ran1(long int *idum); 
 
/* Tables for N = 61, Cmax = 6, R = 1, wx = 0.5 */ 
#define N   61 
#define Wh  0.2F 
 
static const float Qp[N] = { 
  0.000000073831554,  1.000000220755458,  2.000000699949626, 
  3.000002112556964,  4.000006129940982,  5.000017085084540, 
  6.000045743273636,  7.000117647500467,  8.000290658799035, 
  9.000689809453677, 10.001572603900692, 11.003443925497274, 
 12.007244893543472, 13.014640429389804, 14.028419659188476, 
 15.052994021471081, 16.094924338968948, 17.163331791564396, 
 18.269964136950911, 19.428630833920096, 20.653736189335955, 
 21.957774441609310, 22.998747226828737, 23.917177941698039, 
 24.985184046814965, 25.980728281751325, 26.810836243741747, 
 27.991183498160449, 28.934490407170735, 29.946253240075073, 
 30.933010235454027, 31.947135887598186, 32.938290896022764, 
 34.000000000000000, 34.808964922145165, 35.996486142194378, 
 36.981941028650169, 37.917177941698043, 38.999413080343423, 
 39.957774441609310, 40.653736189335959, 41.428630833920096, 
 42.269964136950911, 43.163331791564396, 44.094924338968951, 
 45.052994021471079, 46.028419659188479, 47.014640429389800, 
 48.007244893543472, 49.003443925497272, 50.001572603900691, 
 51.000689809453675, 52.000290658799038, 53.000117647500467, 
 54.000045743273638, 55.000017085084544, 56.000006129940985, 
 57.000002112556963, 58.000000699949624, 59.000000220755460, 
 60.000000073831551 }; 
 
static const int It[N] = { 
 31, 29, 27, 33, 29, 34, 32, 27, 35, 30, 34, 28, 
 32, 33, 27, 35, 37, 31, 34, 32, 36, 27, 33, 38, 
 38, 33, 38, 35, 33, 22, 27, 36, 38, 33, 22, 22, 
 22, 22, 33, 24, 24, 28, 26, 29, 23, 30, 25, 36, 
 24, 26, 31, 29, 25, 33, 28, 26, 31, 30, 28, 32, 
 30 }; 
 
float 
gTriangU61 (long int *idum) 
{ 
    int j; 
    float uN; 
 
/* Alias method to get mixture probability */ 
    uN = N * ran1(idum); 
    j = (int) uN; 
    if (uN > Qp[j]) 
        j = It[j]; 
 
/* Generate a triangular density */ 
    return (Wh * (ran1(idum) + ran1(idum) + (j - (N+1)/2))); 
} 

 

Fig. 17  C-language code for the piecewise linear approximation method with uniformly 
spaced anchor points. 
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float ran1(long int *idum); 

 

/* Tables for N = 61, Cmax = 6, R = 2.8, wx = 0.5 */ 

#define N   61 

 

static const float Qp[N] = { 

  0.000000100357494,  1.000000617706903,  2.000003391363740, 

  3.000015907028457,  4.000064724087186,  5.000230975513477, 

  6.000730434095417,  7.002066615536646,  8.005277624097332, 

  9.012264910286158, 10.026134636740759, 11.051419239875893, 

 12.094014163970524, 13.160697217032322, 14.258204237164311, 

 15.391984669013334, 16.564895535430360, 17.776153536370334, 

 18.982630204058232, 19.997409598799560, 20.963594488490518, 

 21.864069493423752, 22.984359824505184, 23.999999999999996, 

 24.982453245564511, 25.958977324785231, 26.895123415238423, 

 27.902258506759772, 28.864374862383681, 29.860893355842435, 

 30.938316679757598, 31.903488279937068, 32.857387576194853, 

 33.876973903624638, 34.961806468300225, 35.958811073358945, 

 36.994628975729754, 37.999825679533501, 38.996642313597249, 

 39.877939219878350, 40.963594488490521, 41.996115767052586, 

 42.979801060543245, 43.776153536370337, 44.564895535430360, 

 45.391984669013333, 46.258204237164307, 47.160697217032322, 

 48.094014163970527, 49.051419239875891, 50.026134636740757, 

 51.012264910286156, 52.005277624097332, 53.002066615536648, 

 54.000730434095416, 55.000230975513475, 56.000064724087188, 

 57.000015907028455, 58.000003391363741, 59.000000617706903, 

 60.000000100357497 }; 

 

static const int It[N] = { 

 28, 33, 29, 34, 35, 25, 24, 37, 32, 28, 39, 29, 

 26, 30, 25, 40, 24, 23, 36, 37, 22, 19, 41, 23, 

 19, 42, 38, 22, 41, 19, 36, 24, 41, 37, 18, 36, 

 37, 23, 23, 23, 24, 23, 38, 37, 36, 20, 35, 34, 

 31, 27, 33, 21, 38, 22, 23, 36, 30, 26, 31, 27, 

 32 }; 

 

static const float xt[N+2] = { 

 -6.330911971340154, -6.000000000000000, -5.680630648543379, 

 -5.372401296076172, -5.074923365620288, -4.787821834244457, 

 -4.510734760282270, -4.243312827041446, -3.985218902429073, 

 -3.736127613937675, -3.495724938456292, -3.263707806389455, 

 -3.039783719584986, -2.823670382588944, -2.615095346762861, 

 -2.413795666814612, -2.219517569309903, -2.032016132746505, 

 -1.851054978787882, -1.676405974266980, -1.507848943584492, 

 -1.345171391139028, -1.188168233439263, -1.036641540560349, 

 -0.890400286618645, -0.749260108950200, -0.613043075689385, 

 -0.481577461454677, -0.354697530858796, -0.232243329570277, 

 -0.114060482663079,  0.000000000000000,  0.114060482663079, 

  0.232243329570277,  0.354697530858796,  0.481577461454677, 

  0.613043075689385,  0.749260108950200,  0.890400286618645, 

  1.036641540560349,  1.188168233439263,  1.345171391139028, 

  1.507848943584492,  1.676405974266980,  1.851054978787882, 

  2.032016132746505,  2.219517569309903,  2.413795666814612, 

  2.615095346762861,  2.823670382588944,  3.039783719584986, 

  3.263707806389455,  3.495724938456292,  3.736127613937675, 

  3.985218902429073,  4.243312827041446,  4.510734760282270, 

  4.787821834244457,  5.074923365620288,  5.372401296076172, 

  5.680630648543379,  6.000000000000000,  6.330911971340154 }; 

 

float 

gTriangG61 (long int *idum) 

{ 



Generating Gaussian Pseudo-Random Variates 38 

 

 

    int j; 

    float u1, u2, uN; 

 

/* Alias method to get mixture probability */ 

    uN = N * ran1(idum); 

    j = (int) uN; 

    if (uN > Qp[j]) 

        j = It[j]; 

 

/* Generate a general triangular density */ 

  u1 = ran1(idum); 

  u2 = ran1(idum); 

  if (u1 >= u2) 

    return (((xt[j+1] - xt[j]) * u1 + (xt[j+2] - xt[j+1]) * u2) +  

            xt[j]); 

  else 

    return (((xt[j+1] - xt[j]) * u2 + (xt[j+2] - xt[j+1]) * u1) +  

            xt[j]); 

} 
 

Fig. 18  C-language code for the piecewise linear approximation method with geometri-
cally spaced anchor points. 


