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Segmented Log Functions: 

Application to Quantizers and Geometrically-Spaced Sequences 

Abstract 

This report examines log-based compressive functions. A generalized 𝐴-law function which 

subsumes both 𝜇-law and 𝐴-law functions is formulated. Segmented versions of these functions 

are used to form non-uniformly-spaced quantizers. The use of the segmented compressive 

functions to form geometrically-spaced sequences is described. Table-driven methods to imple-

ment general non-uniformly-spaced quantizers are developed. A new approach motivated by 

Walker’s method of aliases is described. 

1 Introduction 

Log-based functions are used as compressor-expander (compander) functions for creating 

quantizers with non-uniform step sizes. This allows for a quantizer to have small step sizes for 

small input levels and large step sizes for large input levels. The 𝜇-law and 𝐴-law functions are 

commonly cited variants of the log function for use as compander functions. Segmented ap-

proximations to these functions have been standardized for use in voice communications. 

In this report, the 𝜇-law function is used to create a geometrically-spaced sequence. This 

sequence is also the basis for defining a segmented approximation to the 𝜇-law function which 

is used as the basis for the ITU-T G.711 standards-compliant 𝜇-law quantizer. 

The 𝐴-law function is another log-based compander function. A generalized 𝐴-law func-

tion is developed which subsumes both the 𝜇-law and standard 𝐴-law functions. The seg-

mented version of the 𝐴-law function requires a further modification to reproduce the ITU-T 

G.711 standards compliant 𝐴-law quantizer. 

An appendix describes quantization schemes which are tailored to the G.711 quantizers. 

In another appendix, table-driven quantization procedures are described. A new quantization 

scheme is described. This procedure uses an auxiliary table to reduce the search complexity. 

  



Segmented Log Functions 2 

 

2 Log Function 

The log function goes from −∞ at 𝑥 =  0 to zero at 𝑥 =  1, and then becomes positive for 𝑥 >

 1 as shown in Fig. 1. Also shown in the figure are samples of the log function with equal-size 

ordinate-increments. The sample points result in 𝑥-increments that have geometric spacing. 

The geometrically-spaced 𝑥-increment property will be shown for a scaled and shifted 

version of the log function, 

 𝑦 = 𝑐 log(𝑏 + 𝑎𝑥). (1) 

The inverse-log function is 

Sample the log function at equally-spaced points on the 𝑦-axis, 

 𝑦𝑛+1 − 𝑦𝑛 = ∆𝑦. (3) 

The corresponding 𝑥-increment is 

 𝑥𝑛+1 − 𝑥𝑛 =
exp (

𝑦𝑛
𝑐 )

𝑎
(𝑟 − 1). (4) 

where 

 𝑟 = exp(Δ𝑦/𝑐). (5) 

 
Fig. 1  The log function log(𝑥). 

 𝑥 =
exp(𝑦/𝑐) − 𝑏

𝑎
. (2) 
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The line joining [𝑥𝑛, 𝑦𝑛] to [𝑥𝑛+1, 𝑦𝑛+1] is a chord to the log function. The 𝑥-increment for the 

previous chord can be written as 

 𝑥𝑛 − 𝑥𝑛−1 =
exp (

𝑦𝑛
𝑐
)

𝑎
(1 −

1

𝑟
). (6) 

The ratio of the adjacent 𝑥-increments is 

 
𝑥𝑛+1 − 𝑥𝑛
𝑥𝑛 − 𝑥𝑛−1

= 𝑟. (7) 

The chords with equal-sized 𝑦-increments have 𝑥-increments which increase geometrically.  
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3 µ-Law Function 

The 𝜇-law function (see Panter and Dite [1], Smith [2]) is the shifted and scaled log function 

with the constants 𝑐 and 𝑏 set to create a normalized curve with both 𝑥 and 𝑦 in the range 

[0, 1]. Following convention, the parameter 𝑎 is renamed to 𝜇. Let 𝐹(1) = 1. Then 𝑐 =

 1/ log(𝑏 + 𝜇). The log function is shifted so that the resulting function evaluates to zero when 

𝑥 = 0. This requirement sets 𝑏 =  1. Using these values, the 𝜇-law function is 

 𝐹𝜇(𝑥, 𝜇) =
log(1 + 𝜇𝑥)

log(1 + 𝜇)
,      0 ≤ 𝑥 ≤ 1. (8) 

The inverse mapping is 

 𝐹𝜇
−1(𝑦, 𝜇) =

(1 + 𝜇)𝑦 − 1

𝜇
,     0 ≤ 𝑦 ≤ 1. (9) 

The slope of the 𝜇-law function is 

 𝑆𝜇(𝑥) =
𝜇

log(1 + 𝜇)

1

(1 + 𝜇𝑥)
,    0 ≤ 𝑥 ≤ 1. (10) 

The ratio of the slope at 𝑥 = 0 to the slope at 𝑥 = 1 is 

 
𝑅𝜇 =

𝑆𝜇(0)

𝑆𝜇(1)

= 1 + 𝜇.

 (11) 

Normally the parameter 𝜇 is taken to be positive. However, from the previous equation 

we can see that if 𝑅𝜇 is less than unity, then 𝜇 will take on values between −1 and zero. From 

Eq. (8), when 𝜇 is positive, increasing 𝑥 moves up the log curve (decreasing slope), while when 

𝜇 is negative, increasing 𝑥 moves down the log curve (increasing slope). The 𝜇-law function 

exhibits an 𝑥-𝑦 flipped symmetry, 

 𝐹𝜇(𝑥, 𝜇) = 1 − 𝐹𝜇 (1 − 𝑥,−
𝜇

1 + 𝜇
). (12) 

The 𝜇-law function is plotted in Fig. 2. The paired top and bottom lines illustrate the 𝑥-𝑦 

flipped symmetry associated with 𝑅𝜇 and 1/𝑅𝜇 . 
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3.1 Segmented µ-Law Function 

Create 𝑀 uniform length segments for 𝑦 in the interval [0, 1], 

For the 𝜇-law function, using 𝑐 = 1/ log(1 + 𝜇)  and Δ𝑦 = 1/𝑀 in Eq. (5), 

 𝑟𝑀 = 1 + 𝜇. (14) 

For 𝑀 segments, the abscissa values define intervals of lengths 𝐿𝑖 = 𝐷𝑟
𝑖 , for 0 ≤ 𝑖 ≤ 𝑀 − 1, 

 𝑳𝒙 = {𝐷, 𝑟𝐷, 𝑟
2𝐷,… , 𝑟(𝑀−1)𝐷}. (15) 

Fitting these 𝑀 segment lengths into the interval [0,1], gives 

 𝐷 =
𝑟 − 1

𝑟𝑀 − 1
. (16) 

Setting 𝑦𝑘
(𝑠)
= 𝑘/𝑀 in Eq. (8), the geometrically-spaced abscissa values on the 𝜇-law function 

are 

 𝒙(𝑠) = {0,
𝑟 − 1

𝑟𝑀 − 1
,
𝑟2 − 1

𝑟𝑀 − 1
,… ,

𝑟𝑀−1 − 1 

𝑟𝑀 − 1
, 1}. (17) 

 
Fig. 2  The 𝜇-law function for different values of 𝑅𝜇 = 1 + 𝜇. 

 𝒚(𝑠) = {0,
1

𝑀
,
2

𝑀
… ,
𝑀 − 1

𝑀
, 1}. (13) 
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An 𝑀 = 4 segment approximation to the 𝜇-law curve is shown in Fig. 3 for 𝑟 =

{4, 2, 1/2, 1/4} alongside the 𝜇-law curves for 𝑅𝜇 = {256, 64, 1/64, 1/256} corresponding to 

𝜇 = {255, 63,−63/64,−255/256}. 

3.1.1 Application to Geometrically-Spaced Sequences 

The segmented 𝜇-law function has application in creating an 𝑁-point sequence 𝒙(𝒔) with 𝑀 =

𝑁 − 1 geometrically-spaced intervals as in Eq. (15). Start with an 𝑁-point uniformly-spaced 

𝒚(𝒔) covering  [0, 1] as in Eq. (13). Let the geometric spacing be determined by the ratio of the 

lengths of the last and first intervals, 

 𝑅𝑠 = 𝑟
𝑁−2. (18) 

Using E q. (14), the value of 𝜇 is 

 
Fig. 3  The 𝜇-law function for different values of 𝑅𝜇 = 𝜇 + 1. Four segment approxima-

tions are shown for 𝑟 = {4, 2, 1/2, 1/4}. 

 
𝜇 = 𝑟𝑁−1 − 1

= ( √𝑅𝑠
𝑁−2 )

𝑁−1
− 1.

 (19) 
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Since the segment spacing on the 𝑥-axis is inversely related to the slopes of the segments, we 

can make the identification1, 

Then 𝒙(𝒔) can be calculated from the inverse 𝜇-law function, 

 

𝑥𝑘
(𝑠)
= 𝐹𝜇

−1(𝑦𝑘
(𝑠)
, 𝜇)

=
(1 + 𝜇)𝑦𝑘

(𝑠)

− 1

𝜇

=
𝑅𝜇
𝑦𝑘
(𝑠)

− 1

𝑅𝜇 − 1
.

,        0 ≤ 𝑘 ≤ 𝑁 − 1. (21) 

Computationally, this calculation can be streamlined by first calculating an auxiliary set 

of values, 

 
𝑣𝑘 = 𝑅𝜇

𝑦𝑘
(𝑠)

,

= exp (log (
𝑅𝑠𝑘

𝑁 − 2
))
, 0 ≤ 𝑘 ≤ 𝑁 − 1. (22) 

Note that 𝑣𝑁−1 = 𝑅𝜇 , Then the values 𝑥𝑘
(𝑠)

can be written as 

 𝑥𝑘
(𝑠) =

𝑣𝑘 − 1

𝑣𝑁−1 − 1
, 0 ≤ 𝑘 ≤ 𝑁 − 1. (23) 

The 𝑁 values 𝑥𝑘
(𝑠)

span [0, 1], but can be scaled and shifted to span other intervals. 

Fig. 4 shows a Matlab script to generate geometrically-spaced values. This routine works 

for both 𝑅𝑠 < 1 and 𝑅𝑠 ≥ 1. Geometrically-spaced values will appear uniformly-space on a log 

axis. 

3.2 Application to Quantizers 

A quantizer maps a continuous-valued input 𝑥 to an index representing one of 𝑁𝑞 partitions of 

the 𝑥-values. Each index selects one of 𝑁𝑞 possible output levels. A stepped quantizer charac-

teristic with non-uniform step sizes is shown in Fig. 5. 

                                                             
1 𝑅𝜇 is defined as the ratio of the slope at 𝑥 = 0 to that at 𝑥 = 1, wheras 𝑅𝑠 is defined as the ratio of 

the lengths of the last to first 𝑥-axis intervals. Since the 𝑦-axis intervals are of equal length, the slope is 

the inverse of the length of the 𝑥-axis intervals. For large 𝑁, 𝑅𝑠 approaches 𝑅𝜇. 

 𝑅𝜇 = ( √𝑅𝑠
𝑁−2 )

𝑁−1
. (20) 
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function y = GeoSpace(d1, d2, Rs, N) 
% This function generates geometrically-spaced values 
% between d1 and d2 (inclusive). The parameter Rs gives 
% the ratio of the last and first increments, 
%        y(N) - y(N-1) 
%   Rs = ------------- . 
%         y(2) - y(1) 
 
if (nargin == 3) 
  N = 100; 
else 
  N = floor(double(N)); 
end 
  
if (N == 1) 
  y = d2; 
elseif (N == 2) 
  y = [d1, d2]; 
elseif (Rs == 1) 
  y = linspace(d1, d2, N); 
else 
  vk = exp(log(Rs) / (N-2) * (0:N-1)); 
  y = (vk - 1) / (vk(N) - 1) * (d2 - d1) + d1; 
end 
  
end 

 

Fig. 4  Matlab code for binary search for quantizer interval 

The quantizer is specified by a set of 𝑁𝑞 − 1 ordered decision levels 𝑥𝑞[𝑛] which delimit 

the 𝑁𝑞 quantizer intervals. The 𝑁𝑞 − 1 finite-valued decision levels are {𝑥𝑞[0],… , 𝑥𝑞[𝑁𝑞 − 2]}. 

These decision levels can be supplemented with the virtual decision levels 𝑥𝑞[−1] = −∞ and 

𝑥𝑞[𝑁𝑞 − 1] = ∞. The index of the interval in which a value 𝑥 lies is determined as 

 𝐼𝑞 = 𝑛 if 𝑥𝑞[𝑛 − 1] ≤ 𝑥 < 𝑥𝑞[𝑛],     0 ≤ 𝑛 ≤ 𝑁𝑞 − 1. (24) 

In this equation, a value falling exactly on the lower limit of an interval is included in the inter-

val. There is but one choice of how to handle a value on the boundary of an interval. The quan-

tized levels are determined by assigning a level 𝑦𝑞[𝑛] to each quantizer interval, 

Normally 𝑦𝑞[𝐼𝑞] is chosen to be inside quantizer interval 𝐼𝑞. 

The 𝜇-law characteristic will be used to provide geometrically-spaced segments. The 𝜇-

law characteristic described earlier is one-sided – it can be made two-sided by applying the 

quantizer to the magnitude of the input signal. The quantizer shown in Fig. 5 was formed by  

 𝑥
𝑥𝑞(∙)
⇒  𝐼𝑞 ⇒ 𝑦𝑞[𝐼𝑞] (25) 
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creating equally spaced values from −1 to +1 in steps of 1/𝑁𝑞 . These were mapped to deci-

sion levels using inverse 𝜇-law function with 𝜇 = 10. The quantizer output levels are placed 

midway between the decision levels. Since the number of output levels is odd, the origin of the 

graph occurs mid-tread in the staircase function. 

3.2.1 ITU-T Recommendation G.711 𝝁-law 

The International Telecommunications Union Recommendation G.711 [3] uses a segmented 𝜇-

law characteristic to generate a quantizer with 256 output levels. Each polarity is imple-

mented with 𝑀 = 8 segments. Within a segment the quantizer characteristic has 16 uni-

formly-spaced output levels. Segment-to-segment, the step sizes increase by the factor 𝑟 = 2, 

giving 𝜇 = 255 (Eq. (14)). The index can be represented with 8-bits (one for the sign, 3 for the 

segment, and 4 for the level within a segment). 

First consider positive-valued 𝑥. Form the 𝑀 = 8 geometrically-spaced segment bounda-

ries for 𝜇 = 255 using a uniformly-spaced 𝒚(𝑠) transformed to the geometrically-spaced 𝒙(𝑠). 

The 𝒙(𝑠) values are the quantizer decision levels at the segment boundaries. The decision lev-

els between the 𝒙(𝑠) segment boundaries are uniformly spaced, defining 16 quantizer inter-

vals between the segment boundaries. The total number of intervals is 𝑁𝑞 = 16𝑀. The 𝑁𝑞 + 1 

decision levels are the 𝑥𝑞[𝑛] values (0 ≤ 𝑛 ≤ 𝑁𝑞). The last decision levels 𝑥𝑞[𝑁𝑞] is used only 

 
Fig. 5  A non-uniform step size quantizer (𝑁 = 11) designed using a continuous 𝜇-

law function, 𝜇 = 10. 



Segmented Log Functions 10 

 

to define the last quantizer output level.2 The quantizer output values are the mid-points of 

the intervals defined by the decision levels, 

 𝑦𝑞[𝑛] =
𝑥𝑞[𝑛 + 1] + 𝑥𝑞[𝑛]

2
,       0 ≤ 𝑛 ≤ 𝑁𝑞 − 1. (26) 

Scaled values in G.711 𝝁-law 

By convention in G.711, the decision levels and the output levels are scaled such they take on 

integer values. Set the smallest step size to be 2, with the end of the first segment being 

2 × 16. From Eq. (17), the corresponding normalized decision level at the end of the first seg-

ment is 1/(𝑟𝑀 − 1) = 1/255 with 𝑟 = 2 and 𝑀 = 8. This gives the scaling factor 32 × 255 =

8160 used in the G.711 specification. 

To fit the scaled output levels for positive and negative values together, the scaled output 

levels are shifted down by 1 to put the first positive output level at zero. The positive decision 

levels are similarly moved down by one, and the lowest decision level is readjusted to 0 (in-

stead of −1). After scaling and shifting, the decision levels at the positive segment boundaries 

are 

 𝑥𝑞[16𝑘] = {
0, 𝑘 = 0,

32(2𝑘 − 1) − 1, 1 ≤ 𝑘 ≤ 𝑀.
 (27) 

The two-sided quantizer with 255 ordered decision levels and 256 output levels is 

formed from the one-sided quantizer as follows, 

 
𝒚𝑞
′ = {−𝑦𝑞[𝑁𝑞 − 1],… ,−𝑦𝑞[0], 𝑦𝑞[0], … , 𝑦𝑞[𝑁𝑞 − 1]},

𝒙𝑞
′ = {−𝑥𝑞[𝑁𝑞 − 1],… ,−𝑥𝑞[1], 𝑥𝑞[0], 𝑥𝑞[1], … , 𝑥𝑞[𝑁𝑞 − 1}.

 (28) 

The resulting quantizer has two identical output levels at zero, one for −1 ≤ 𝑥 < 0, and the 

other for 0 ≤ 𝑥 < 1. Note also that 𝑥𝑞[0] = 0 and 𝑦𝑞[0] = 0. Both 𝒚𝑞
′  (2𝑁𝑞 values) and 𝒙𝑞

′  

(2𝑁𝑞 − 1 values) are anti-symmetric. The step sizes for positive inputs are {2, 4, … ,128, 256}; 

the largest output level is 8031; and the overload point is 8159 (calculated as 8031 + 256/2). 

                                                             
2 This virtual decision level delimits the “overload” region. Any inputs larger than the virtual deci-

sion level will result in an error larger than a half of the largest quantizer step size. 
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Scaled values for 16-bit inputs 

For 16-bit integer input values (values in [−32,768,+32,767]), the decision levels and output 

levels defined by G.711 will be scaled up by a factor of 4. The segment boundaries (cf. Eq. (27)) 

become 

 𝑥𝑞[16𝑘] = {
0, 𝑘 = 0,

128(2𝑘 − 1) − 4, 1 ≤ 𝑘 ≤ 𝑀.
 (29) 

Using this scaling, the steps sizes are {16, 32, … , 512, 1024}; the largest output level is 32,124; 

and the overload point is 32,636 (calculated as 32,124 + 1024/2). 

The G.711 𝜇-law quantizer is shown in Fig. 6. The origin of the graph occurs mid-tread in 

the staircase function. This means that inputs smaller than a half of the smallest step size will 

result in a zero-valued output level. 

Some properties of the segmented 𝜇-law quantizer: 

• The two sided 𝜇-law quantizer is sometimes referred to as a 15-segment approximation 

since the negative and positive segments around the origin are collinear. 

 
Fig. 6  𝜇-law quantizer specified in ITU-T Recommendation G.711. The inset shows an 

expanded region around the origin. 
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• Recommendation G.711 is silent about how to handle an input which lies on a decision 

level. In the reference implementation in Recommendation G.191, an input value on a de-

cision level belongs to the interval above the decision level. 

• Having step sizes which double (𝑟 = 2) segment-to-segment allows the 8-bit index to be 

created using bit-wise operations as described in Appendix A. Appendix B describes tota-

ble-driven methods to implement non-uniformly-spaced quantizers. 

• The G.711 standard defines an 8-bit code which is the bit complement of the 8-bit quan-

tizer index. 

• The output value can be obtained using a table lookup of the 8-bit code. 
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4 A-Law Function 

The A-law function has a linear part for small values and a logarithmic part for larger values. 

The scaled log function used in the 𝐴-law function is, 

 𝐹(𝑥) = 𝑐 log(𝑎𝑥). (30) 

This is a scaled log function with the offset 𝑏 in Eq. (1) set zero. Setting the function value for 

𝑥 = 1 to be 1, the constant 𝑐 = 1/ log(𝑎). The logarithmic part is then 

 
𝐹(𝑥) =

log(𝑎𝑥)

log(𝑎)

= 1 + log𝑎(𝑥) .

 (31) 

The 𝐴-law function is most often written with 𝐴 = 𝑎/𝑒, giving 

 𝐹(𝑥) =
1 + log(𝐴𝑥)

1 + log (𝐴)
. (32) 

The linear part of the 𝐴-law function starts at zero for 𝑥 = 0. The line from the origin 

meets the log function at a point of tangency, 

 [𝑥𝑡 , 𝑦𝑡] = [
1

𝐴
,

1

1 + log(𝐴)
]. (33) 

The full 𝐴-law function is 

 𝐹𝐴(𝑥, 𝐴) =

{
 
 

 
 

𝐴𝑥

1 + log(𝐴)
, 0 ≤ 𝑥 ≤

1

𝐴
,

1 + log(𝐴𝑥)

1 + log(𝐴)
,
1

𝐴
 ≤ x ≤ 1.

 (34) 

The 𝐴-law companding function first appears in Cattermole [5]. 

The inverse 𝐴-law function is 

 𝐹𝐴
−1(𝑦, 𝐴) =

{
 
 

 
 1 + log(𝐴)

𝐴
𝑦, 0 ≤ 𝑦 ≤

1

1 + log(𝐴)
,

exp((1 + log(𝐴))(𝑦 − 1)) ,
1

1 + log(𝐴)
 ≤ y ≤ 1.

 (35) 

An example of the 𝐴-law function is shown in Fig. 7 for 𝐴 = 8. The solid line from the 

origin meets the log curve at the point of tangency marked with an ×. 
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Fig. 7  𝐴-law function for 𝐴 = 8. 

The slope of the 𝐴-law characteristic is 

 𝑆𝐴(𝑥) =

{
 
 

 
 

𝐴

1 + log(𝐴)
, 0 ≤ 𝑥 ≤

1

𝐴
,

1/𝑥

1 + log(𝐴)
,
1

𝐴
 ≤ x ≤ 1.

 (36) 

The ratio of the slope at 𝑥 = 0 to the slope at 𝑥 = 1 is 

4.1 Generalized A-Law Function 

The general shifted/scaled log function of Eq, (1) is 

In can be noticed that the 𝜇-law function has an offset 𝑏 = 1, while the 𝐴-law function has an 

offset 𝑏 = 0. For a generalized version of the 𝐴-law function, the logarithmic portion can be 

formed by allowing 𝑏 to take on values 𝑏 ≤ 1 (including negative values.). The scaling factor 𝑐 

is chosen so that 𝑥 = 1 maps to 𝑦 = 1, giving 𝑐 = 1/ log(𝑏 + 𝑎) 

 
𝑅𝐴 =

𝑆𝐴(0)

𝑆𝐴(1)

= 𝐴.

 (37) 

 𝑦 = 𝑐 log(𝑏 + 𝑎𝑥), (38) 
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The logarithmic function has the lower end at [𝑥𝑧, 0], where 𝑥𝑧 = (1 − 𝑏)/𝑎. The slope of 

the logarithmic function is 𝑎𝑐/(𝑏 + 𝑎𝑥). The ratio of the slope at [𝑥𝑧, 0] to the slope at [1,1] is 

 𝑅log = 𝑏 + 𝑎. (39) 

The generalized 𝐴-law function has a linear portion which starts at the origin and meets the 

log function at a point of tangency [𝑥𝑡 , 𝑦𝑡]. Let the ratio of the slope at [𝑥𝑡 , 𝑦𝑡] to the slope at 

[1,  1] be 

 𝐴 =
𝑏 + 𝑎𝑥𝑡
𝑏 + 𝑎

. (40) 

Let 𝛾 be a measure of the reduction in the range of slopes for the generalized 𝐴-law frunction 

relative to the range of slopes for the logarithmic function, 

 
𝛾 =

𝑅log

𝐴
,

= 𝑏 + 𝑎𝑥𝑡 .
 (41) 

Then the point of tangency is 

 
𝑥𝑡 =

𝛾 − 𝑏

𝑎
,

𝑦𝑡 = 𝑐 log(𝛾) .
 (42) 

Another expression for the point of tangency is found by equating the slope of the linear 

portion to the slope of logarithmic portion at the point of tangency, 

 
𝑦𝑡
𝑥𝑡
=

𝑎𝑐

𝑏 + 𝑎𝑥𝑡
. (43) 

This equation along with Eq. (42) gives an expression for 𝑏, 

 𝑏 = 𝛾(1 − log(𝛾)). (44) 

Then from Eq. (39) 

 𝑎 = 𝛾(𝐴 + log(𝛾) − 1). (45) 

Substituting for 𝑏 and 𝑎 in Eq. (42) gives the point of tangency as 

 

𝑥𝑡 =
log(𝛾)

𝐴 + log(𝛾) − 1
,

𝑦𝑡 =
log(𝛾)

log(𝛾) + log(𝐴)
.

 (46) 

With these formulations, the generalized 𝐴-law function can be specified entirely in 

terms of 𝐴 and 𝛾, 
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 𝐹𝐴(𝑥, 𝐴, 𝛾) =

{
 
 

 
 
𝐴 − 1 + 𝐿𝛾  

𝐿𝛾 + log (𝐴)
𝑥, 0 ≤ 𝑥 ≤

𝐿𝛾

𝐴 − 1 + 𝐿𝛾
,

𝐿𝛾 + log(1 − 𝐿𝛾 + (𝐴 − 1 + 𝐿𝛾)𝑥)

𝐿𝛾 + log(𝐴)
,

𝐿𝛾

𝐴 − 1 + 𝐿𝛾
≤ 𝑥 ≤ 1,

 (47) 

where 𝐿𝛾 = log(𝛾). The generalized 𝐴-law function becomes the 𝜇-law function when 𝛾 = 1 

(with 𝜇 = 𝐴 − 1) and the conventional 𝐴-law function when 𝛾 = 𝑒. 

4.2 Segmented A-Law Function 

Consider sampling the logarithmic part of generalized 𝐴-law at equally-spaced ordinate values 

𝑦𝑛 = 𝑘/𝑀. Then ∆𝑦= 1/𝑀 and using Eq. (5), 

 𝑟𝑀 = 𝑏 + 𝑎. (48) 

Using the inverse log function of Eq (2), the 𝑥𝑛 values corresponding to the equally spaced 𝑦𝑛 

values are 

 𝑥𝑛 =
𝑟𝑛 − 𝑏

𝑟𝑀 − 𝑏
. (49) 

Consider including the linear part of the generalized 𝐴-law function as part of the seg-

mented function. From geometric considerations, the tangent line has a slope larger than any 

chord above the point of tangency and a slope smaller than any chord below the point of tan-

gency. This means that the ratio of the tangent line slope to slope of any of the chords cannot 

fit into the geometric sequence of the slopes of the chords. 

In the next section, a modified geometrically spaced function is described. It will be 

shown that this sequence can be generated by sampling a modified generalized 𝐴-law func-

tion. The modification involves replacing the tangent line by another line emanating from the 

origin that intersects the log curve at a point to the left of the tangent point. 

4.2.1 Application to Modified Geometrically-Spaced Sequences 

The standard 𝐴-law quantizer has segment sizes which follow a modified geometric spacing. 

For uniformly-spaced ordinate values, the abscissa values have intervals of the form  

 𝑳𝑥 = {𝐷,𝐷, 𝑟𝐷, 𝑟
2𝐷… , 𝑟𝑀−2𝐷}. (50) 

The lengths of the first two segments are equal before the geometric spacing applies. Fitting 

these lengths into the [0, 1] interval gives 
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 𝐷 =
𝑟(𝑟 − 1)

𝑟𝑀 − 𝑟(2 − 𝑟)
. (51) 

The segment boundaries are 

 𝑥𝑘
(𝑠)
= {

0, 𝑘 = 0,

𝑟𝑘 − 𝑟(2 − 𝑟)

𝑟𝑀 − 𝑟(2 − 𝑟)
, 𝑘 = 1,… ,𝑀.

 (52) 

A segmented compressive function which maps the non-uniformly spaced 𝑥 values to 

uniformly spaced 𝑦 values is formed when the 𝑦 segment boundaries are set to 

 𝒚(𝑠) = {0,
1

𝑀
,
2

𝑀
,… ,

𝑀 − 1

𝑀
, 1}. (53) 

This compressive function has been determined without reference to a log function. 

Comparing the segment boundaries of Eq. (52) to Eq. (49), the appropriate value of the 

offset is 𝑏 = 𝑟(2 − 𝑟). Then in terms of 𝑀 and r, 

 
𝑏 = 𝑟(2 − 𝑟),

𝑎 = 𝑟𝑀 − 𝑏.
 (54) 

Equating the value of 𝑏 as a function of 𝑟 above and the value of 𝑏 as a function of 𝛾 in Eq. (44), 

determines 𝛾 as a function of 𝑟. There is a distinct value of 𝛾 for each 𝑟. The values 𝛾 and 𝐴 =

𝛾𝑟𝑀 specify the log part of a generalized 𝐴-law function. The linear part of the linear/log func-

tion extends from the origin to [𝑥1
(𝑠)
, 𝑦1
(𝑠)
]. An example for the case of 𝑟 = 2 appears in the next 

subsection. 

Modified geometrically-spaced Sequence for 𝒓 = 𝟐 

Restrict 𝑟 to be 2. Then from Eq. (54) 𝑏 = 0 and 𝑎 = 𝑟𝑀. Then from Eq (44) 𝛾 = 𝑒, correspond-

ing to the log part of a standard 𝐴-law function. The formula for the 𝑥-segment boundaries in 

Eq. (52) simplifies to, 

 𝑥𝑘
(𝑠)
= {
0, 𝑘 = 0,
1

2𝑀−𝑘
, 𝑘 = 1,… ,𝑀.

 (55) 

For all except the first boundary, the 𝑥 and 𝑦 segment boundaries are points on the log part of 

a (standard) 𝐴-law function. 
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 𝑦𝑘
(𝑠)
=
1 + log(𝐴𝑥𝑘

(𝑠)
)

1 + log(𝐴)
,   𝑘 = 1,… ,𝑀, (56) 

with 

The first segment goes from the origin to a point on the log function at [1 2𝑀−1⁄ , 1 𝑀⁄ ], 

the next segment (collinear to the first) is a chord to the log function. The initial linear portion 

can also be interpreted as the double length line from the origin to the point [1 2𝑀⁄ , 2/𝑀]. 

A plot of the log function and the segmented approximation is shown in Fig. 8. The con-

tinuous log curve is for 𝐴 = 𝑟𝑀/𝑒 with 𝑟 = 2,𝑀 =4. The initial segments do not match the tan-

gent line portion of the continuous 𝐴-law function. The tangent line extends from the origin to 

meet the log curve at the point of tangency marked with an x in the figure. 

 
Fig. 8  𝐴-law function for 𝐴 = 16/𝑒 (5.89) and a 4-segment approximation. 

 2𝑀 = 𝐴𝑒;    𝐴 = 2𝑀/𝑒. (57) 
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4.3 Application to Quantizers 

4.3.1 ITU-T Recommendation G.711 – 𝑨-law quantization 

The International Telecommunications Union Recommendation G.711 [3] uses a segmented 

𝐴-law characteristic to generate a quantizer with 256 output levels. Each polarity is imple-

mented with 𝑀 = 8 segments. The first two segments have the same step size; for subsequent 

segments, the step sizes increase by the factor 𝑟 = 2. Except for the first boundary, the seg-

ments boundaries lie on the log part of an 𝐴-law function with 𝐴 = 94.2 (calculated as 2𝑀/𝑒). 

Within a segment the quantizer characteristic has 16 output levels. The index can be repre-

sented with 8-bits (one for the sign, 3 for the segment, and 4 for the level within a segment). 

In the literature on quantizers, the segmented function with 𝑀 = 8 is described as ap-

proximating an 𝐴-law function for 𝐴 = 87.3 The piecewise linear companding law given by the 

segmented 𝐴-law function used in G.711 was compared to the standard 𝐴-law function for 

various values of 𝐴. This was done by generating 1,000,000 uniformly distributed 𝑥-values 

and passing these through the two companding functions. The maximum of the absolute dif-

ference was calculated for each value of 𝐴. The smallest error (about 1% of full scale) occurred 

for 𝐴 = 87.56.4 

First consider positive-valued 𝑥. Form the 𝑀 = 8 segment geometrically-spaced values 

for 𝑟 = 2 using a uniformly-spaced 𝒚(𝑠) transformed to a modified geometrically-spaced 𝒙(𝑠) 

values. The 𝒙(𝑠) serve as the quantizer decision levels at the segment boundaries. Use linear 

interpolation between the 𝒙(𝑠) values to fill in uniformly spaced decision levels defining a total 

of 16 intervals between the segment boundaries. The total number of intervals is 𝑁𝑞 = 16𝑀. 

The 𝑁𝑞 + 1 decision levels are the 𝑥𝑞(𝑛) values (0 ≤ 𝑛 ≤ 𝑁𝑞). The last decision level (𝑥𝑞(𝑁𝑞)) 

is a virtual decision level used only to define the last quantizer output value. The quantizer 

output values are the mid-points of the intervals defined by the decision levels, 

 𝑦𝑞(𝑛) =
𝑥𝑞(𝑛 + 1) + 𝑥𝑞(𝑛)

2
,       0 ≤ 𝑛 ≤ 𝑁𝑞 − 1. (58) 

                                                             
3 In [6], “The ITU chose the values 𝐴=87.56 and 𝜇 = 255 for the G.711, standard…”. 

4 If the segmented G.711 𝜇-law quantizer is compared on the same basis, the best fit is to a stand-

ard 𝜇-law function with 𝜇 = 229.3.  
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Scaled values in G.711 A-law 

By convention in G.711, the decision levels and output values are scaled such they take on in-

teger values. Set the smallest step size to be 2, with the end of the second segment being 

2 × 32. From Eq. (55), the corresponding normalized decision level at the end of the first seg-

ment is 1/27 (for 𝑟 = 2 and 𝑀 = 8). The appropriate scaling factor is 32 × 128 = 4096. 

After scaling the decision levels at the positive segment boundaries are 

The two-sided quantizer with 255 ordered decision levels and 256 output levels can be 

formed from the one-sided quantizer as follows, 

 
𝒚𝑞
′ = {−𝑦𝑞[𝑁𝑞 − 1],… , −𝑦𝑞[0], 𝑦𝑞[0], … , 𝑦𝑞[𝑁𝑞 − 1]},

𝒙𝑞
′ = {−𝑥𝑞[𝑁𝑞 − 1],… ,−𝑥𝑞[1], 𝑥𝑞[0], 𝑥𝑞[1]… , 𝑥𝑞[𝑁𝑞 − 1}.

 (60) 

The step sizes for positive inputs are {2, 2, 4, … . 64, 128}; the largest output level is 4032; and 

the overload point is 4096 (calculated as 4032 + 128/2). 

Scaled values for 16-bit inputs 

For 16-bit integer input values (values in [−32,768,+32,767]), the decision levels and output 

levels defined by G.711 will be scaled up by a factor of 8. The segment boundaries (cf. Eq.(59)) 

become 

 𝑥𝑞[16𝑘] = {
0, 𝑘 = 0,

128 × 2𝑘  , 1 ≤ 𝑘 ≤ 𝑀.
 (61) 

Using this scaling, the steps sizes are {16, 16, 32,… , 512, 1024}; the largest output level is 

32,256; and the overload point is 32,768 (calculated a 32,256 + 1024/2). 

The G.711 𝐴-law quantizer is shown in Fig. 9.. The origin of the graph occurs mid-step in 

the staircase function. Compared with the G.711 𝜇-law quantizer shown in Fig. 6, the step size 

for small input levels is twice as large.  

Some properties of the segmented 𝐴-law quantizer: 

• The two sided 𝐴-law quantizer can be considered to be a 13-segment approximation, 

since the two negative and the two positive segments around the origin are collinear. 

 𝑥𝑞(16𝑘) = {
0, 𝑘 = 0,

16 × 2𝑘, 𝑘 = 1,… ,𝑀.
 (59) 
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Fig. 9  𝐴-law quantizer specified in ITU-T Recommendation G.711. The inset shows an 

expanded region around the origin. 

• Recommendation G.711 is silent about how to handle an input which lies on a decision 

level. In the reference implementation in Recommendation G.191, a value on a decision 

level belongs to the interval above the decision level. 

• Having step sizes which double (𝑟 = 2) with the segments allows the 8-bit index to be 

created using bit-wise operations as described in the Appendix A. Appendix B describes 

totable-driven methods to implement non-uniformly-spaced quantizers. 

• The G.711 standard defines an 8-bit code created using exclusive-or operation on the 8-

bit index value. 

• The output value can be obtained using a table lookup of the 8-bit code. 
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5 Summary and Discussion 

This report has described log compressive functions, culminating in a generalized 𝐴-law func-

tion which subsumes the =𝜇-law and  𝐴-law functions. The generalized 𝐴-law function has two 

parameters 𝐴 and 𝛾. Effectively 𝛾 controls the length of the linear portion. With 𝛾 chosen such 

that there is no linear portion, the resulting 𝜇-law function can be segmented. It is shown that 

the generalized 𝐴-law function with a non-zero linear portion is not directly amenable to seg-

mentation. Segmentation of the log-portion of the generalized 𝐴-law function, with a modified 

linear segment does, however, work. 

Appendix A describes on standards-based algorithms for implementing segmented 𝜇-law 

and segmented 𝐴-law quantizers. 

Appendix B describes table driven approaches for implementing non-uniformly-spaced 

quantizers. A new alias table method is described. This method uses an auxiliary table to re-

duce the search space.  
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Appendix A Implementing µ-law and A-law Quantizers 

The quantization strategy often used to implement a (segmented) 𝜇-law or 𝐴-law quantizer 

takes advantage of the fact that step size is constant for a segment and that step sizes double 

from segment to segment. The process identifies the sign (1 bit), the segment index (3 bits), 

and the level within the segment (4 bits). The result can be combined into an 8-bit code which 

identifies the quantizer interval 

The following description describes the reference implementations in ITU-T G.191, modi-

fied for 16-bit integer input values. 

A.1 Segmented µ-Law Quantizer 

The steps to determine the quantizer interval index are as follows: 

1. Record the sign of the input value. If the value is negative, convert it to a positive value.  

a. Twos-complement negation. If the input value is the most negative value (−32,768), 

change it to the most positive value (32767). For all other negative values, apply 

twos-complement negation. Twos-complement negation is used in the reference code 

for the G.711.1 specification [7]. The effect is that for positive input values, a value on 

a decision level gives an output value above the decision level (larger magnitude), and 

for negative input values, a value on a decision level gives an output value below the 

decision level (larger magnitude). 

b. Ones-complement negation. The magnitude of the positive value is one smaller than 

the magnitude of the negative value. Ones-complement negation is used in the refer-

ence code in the G.191 specification [6]. The effect is that for both positive and nega-

tive input values, a value on a decision level gives an output value above the decision 

level. 

2. Saturate the (positive) value to one less than the overload point (to 32,635). 

3. The decision levels at the segment boundaries are of the form 128(2𝑘 − 1) − 4 (see 

Eq. (59)). Adding 132 to this gives decision levels which are powers of two, 128 × 2𝑘. 

Adding the same 132 value to the inputs facilitates identifying the segment number – 

find the position of the most significant one-bit. Finding the segment number is an oper-

ation of the form ⌊log2(𝑥)⌋, but is implemented as a shift loop to search for the leftmost 

one-bit. 
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4. Pick up 4 bits after the segment identifying bit. This is the index of the quantization in-

terval within the segment. 

5. Form the overall index by concatenating the sign (0 for positive, 1 for negative), segment 

number (0 to 7), and quantizer level within the segment (0 to 15). 

6. Form a code from the index by complementing the bits of the index. 

The table below shows the bit patterns used in this algorithm. 

Table 1 Bit Patterns for 𝜇-law coding 

Segment 
𝑥 + 132 

Input Level Index 
𝑦 + 132 

Output Level 

0 0000 0000 1abc d... 000 abcd 0000 0000 1abc d100 

1 0000 0001 abcd .... 001 abcd 0000 0001 abcd 1000 

2 0000 001a bcd. .... 010 abcd 0000 001a bcd1 0000 

3 0000 01ab cd.. .... 011 abcd 0000 01ab cd10 0000 

4 0000 1abc d... .... 100 abcd 0000 1abc d100 0000 

5 0001 abcd .... .... 101 abcd 0001 abcd 1000 0000 

6 001a bcd. .... .... 110 abcd 001a bcd1 0000 0000 

7 01ab cd.. .... .... 111 abcd 01ab cd10 0000 0000 
 

A.2 Segmented A-Law Quantizer 

The steps to generate the quantizer interval index are as follows: 

1. Record the sign of the input value. If the value is negative, convert it to a positive value.  

a. Twos-complement negation. If the input value is the most negative value (−32,768), 

change it to the most positive value (32767). For all other negative values, apply 

twos-complement negation. Twos-complement negation is used in the reference code 

for the G.711.1 specification [7]. The effect is that for positive input values, a value on 

a decision level gives an output value above the decision level (larger magnitude), and 

for negative input values, a value on a decision level gives an output value below the 

decision level (larger magnitude). 

b. Ones-complement negation. The magnitude of the positive value is one smaller than 

the magnitude of the negative value. Ones-complement negation is used in the refer-

ence code in the G.191 specification [6]. The effect is that for both positive and nega-

tive input values, a value on a decision level gives an output value above the decision 

level. 
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2. The decision levels at the segment boundaries are of the form 128 × 2𝑘 (see Eq. (59)). 

The segment number is determined from the position of the most significant one-bit. 

Finding the segment number is an operation of the form ⌊log2(𝑥)⌋, but is implemented 

as a shift loop to search for the leftmost one-bit. 

3. Pick up 4 bits after the segment identifying bit. This is the index of the quantization in-

terval within the segment. 

4. Form the overall index by concatenating the sign (0 for positive, 1 for negative), segment 

number (0 to 7), and quantizer level within the segment (0 to 15). 

5. Form a code from the index by complementing selected bits of the index (exclusive OR 

with 0xD5). 

The table below shows the bit patterns used in this algorithm. 

A.3 Decoding 

The output value can be created from the code by running the algorithms described above in 

reverse. A simpler approach is to use the 8-bit code as an index to a table of 256 output levels. 

A.4 Rounding Considerations 

The bit-wise operations described above start with a 16-bit integer value. If the input is of 

higher precision (floating point, for instance), then converting to a 16-bit operation is itself a 

quantization step. To be fully compatible (preserve the correct decision levels), this conver-

sion must use the appropriate form of conversion to integer values. 

For case 1a) in the procedures above, twos-complement negation requires that the con-

version from the higher precision drop the fractional part. Discarding the fractional part 

Table 2 Bit Patterns for 𝐴-law coding 

Segment 
𝑥 

Input Level Index 
𝑦 

Output Level 

0 0000 0000 abcd .... 000 abcd 0000 0000 abcd 1000 

1 0000 0001 abcd .... 001 abcd 0000 0001 abcd 1000 

2 0000 001a bcd. .... 010 abcd 0000 001a bcd1 0000 

3 0000 01ab cd.. .... 011 abcd 0000 01ab cd10 0000 

4 0000 1abc d... .... 100 abcd 0000 1abc d100 0000 

5 0001 abcd .. . .... 101 abcd 0001 abcd 1000 0000 

6 001a bcd. .... .... 110 abcd 001a bcd1 0000 0000 

7 01ab cd.. .... .... 111 abcd 01ab cd10 0000 0000 
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means that resulting magnitude is less than or equal to the value. For case 1b), the conversion 

should use the floor function. 

If rounding is used, the effective quantizer decision levels are modified. Consider the inte-

ger-valued decision level 𝑥𝑞[𝑖]. When rounding is used, all values within ½ unit of the decision 

level will take on the value of the decision level, effectively moving the decision level by ½ a 

unit. 
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Appendix B Implementing Non-Uniform Quantizers 

Consider a non-uniformly-spaced quantizer defined by a set of 𝑁𝑞 − 1 finite decision levels. 

There are 𝑁𝑞 quantizer intervals, indexed from 0 to 𝑁𝑞 − 1. Quantization involves identifying 

which interval a value 𝑥 falls in. 

B.1 Quantizer Index Search 

A simple strategy is to search for the quantization interval. This approach involves up to 𝑁𝑞 −

1 comparisons. A more efficient strategy is to use a binary search. A snippet of Matlab code for 

this approach is shown in Fig. 10. The number of iterations needed to identify the quantizer 

interval is 

 ⌊log2(𝑁𝑞)⌋ ≤ 𝑁𝑖 ≤ ⌈log2(𝑁𝑞)⌉. (62) 

 

function index = QuantBS(x, Xq) 
% Binary search for the quantizer interval 
 
iL = 0; 
iU = length(Xq) + 1; 
while (iU > iL + 1) 
  i = floor((iL + iU) / 2); 
  if (x < Xq(i)) 
    iU = i; 
  else 
    iL = i; 
  end 
end 
index = iL; 
 
end 

 

Fig. 10  Matlab code for binary search for quantizer interval 

The code for the binary search is universal – the same code can be used for any quantizer 

by using the appropriate table of decision levels. In addition, the code does not have special 

tests for values below the first quantizer boundary or above the last quantizer boundary. 

B.2 Quantizer Alias Table 

Another approach uses a method introduced in [8]. This approach is motivated by Walker’s 

method of aliases which can be used to generate discrete random variables with given proba-
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bilities. The alias table is an auxiliary table that is used along with the table of quantizer deci-

sion levels. The alias table provides a lower limit for the quantizer index thus that reducing 

the range of quantizer intervals that need to be searched. 

B.2.1 Alias Table 

The alias table provides a starting index for a search as follows. 

1. Consider a shifted and expanded input value 𝑣 which takes on values from 0 to 𝑁 − 1 as 

𝑥 takes on values from 𝑥𝑞[0] to 𝑥𝑞[𝑁𝑞 − 2], 

 𝑣 = 𝑎(𝑥 − 𝑥𝑞[0]). (63) 

where 

 𝑎 =
𝑁 − 1

𝑥𝑞[𝑁𝑞 − 2] − 𝑥𝑞[0]
. (64) 

As 𝑣 takes on values {0, 1, … ,𝑁 − 1}, 𝑥 takes on values {𝑥𝑞[0],… , 𝑥𝑞[0] +

𝑘 𝑎⁄ ,… , 𝑥𝑞[𝑁𝑞 − 2]}. 

2. Create an alias table 𝑇𝐼 with 𝑁 integer-valued elements. Table element 𝑇𝐼[𝑘] contains the 

quantizer index for the value 𝑥 = 𝑥𝑞[0] + 𝑘 𝑎⁄ . 

The size of the alias table 𝑁 will determine the maximum number of decision levels that 

have to be tested. Let the minimum size of 𝑝 adjacent quantizer intervals be 

 Δ𝑝 = min
i
(𝑥𝑞[𝑖 + 𝑝] − 𝑥𝑞[𝑖]). (65) 

Choosing 𝑁 large enough will guarantee that 𝑇𝐼[𝑛] ≤ 𝑇𝐼[𝑛] + 𝑝, 

 𝑁 ≥
𝑥𝑞[𝑁𝑞 − 2] − 𝑥𝑞[0]

Δ𝑝
+ 1. (66) 

Choosing 𝑁 this way means that at most 𝑝 tests against decision levels are needed. Since Δ𝑝 >

𝑝Δ1, this allows for a trade-off of a decreased table size against an increased number of tests. 

Conversely, if 𝑁 is specified, the maximum number of quantizer intervals that need to be 

searched is 

 𝑝 = max
𝑛
(𝑇𝐼[𝑛 + 1] − 𝑇𝐼[𝑛] ). (67) 

A companding function can be applied to the quantizer decision levels to reduce the ratio 

of largest quantizer interval to smallest quantizer interval. Doing so can reduce the number of 
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alias table elements 𝑁. The example presented later uses companding functions tailored to the 

quantizer boundaries. 

B.2.2 Quantization procedure 

1. If 𝑥 < 𝑥𝑞[0], set 𝐼𝑞 = 0; or if 𝑥 ≥ 𝑥𝑞[𝑁𝑞 − 2], set 𝐼𝑞 = 𝑁𝑞 − 1. If neither case occurs, con-

tinue with the following steps. 

2. Identify upper and lower bounds for the quantizer index using 𝑇𝐼[[𝑛], where 

 𝑛 = ⌊𝑎(𝑥 − 𝑥𝑞[0])⌋. (68) 

The quantizer index is bounded by 

 𝑇𝐼[𝑛] ≤ 𝐼𝑞 ≤ 𝑇𝐼[𝑛 + 1]. (69) 

3. Set 𝐼𝑞 to 𝑇𝐼[𝑛].Test 𝑥 ≥ 𝑥𝑞[𝐼𝑞 + 1]. If so, increment 𝐼𝑞. Continue testing until the test fails. 

If the alias table 𝑇𝐼 has been created using a companding function, the same companding 

function must be applied to the input value 𝑥. 

Fig. 11 shows Matlab code for the quantization procedure. This code works for any value 

of 𝑝. For a given value of 𝑝, the while loop can be unwrapped to eliminate one comparison. 

The procedure includes the use of a companding function. In the simplest case, the com-

panding function is an identity function. 

function index = QuantAlias(x, Ti, Xq, Fn, par) 
% 0 <= index <= Nq-1 
 
Nq = length(Xq) + 1; 
if (x < Xq(1)) 
  index = 0; 
elseif (x >= Xq(Nq-1)) 
  index = Nq - 1; 
else 
 
  % Apply companding function to the normalized x value 
  xn = Fn((x - Xq(1)) / (Xq(end) - Xq(1)), par); 
 
  N = length(Ti); 
  i = floor((N - 1) * xn); 
  index = Ti(i+1); 
  while (x >= Xq(index + 1)) 
    index = index + 1; 
  end 
end 
 
end 

 

Fig. 11  Matlab code for quantizing using an alias table 
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B.2.3 Example 

As an example, consider the segmented 𝐴-law quantizer for positive inputs. If a companding 

function is not used, the size of the alias table for several values of 𝑝 appears in the first row of 

Table 3. 

The number of comparisons used to isolate the quantizer intervals is 𝑝 + 2. This com-

pares with 7 for the binary search algorithm shown earlier. A reduction in the number of com-

parisons comes with the addition of large alias table of indices. 

The table also shows 3 cases where a companding function is used to reduce the ratio of 

the smallest to biggest step sizes in the quantizer. the companding functions map an input 𝑥 in 

[0, 1] to an output in [0,1]. The companding functions have a slope larger than 1 at 𝑥 = 0 and a 

slope smaller than 1 at 𝑥 = 1. In between, the companding functions are concave down. 

Quadratic companding function 

A quadratic companding function is 

 𝐹(𝑥, 𝑎) = 𝑎𝑥2 + (1 − 𝑎)𝑥. (70) 

Values of 𝑎 which give the minimum table size are {−1, −1.035, −1.07}, for 𝑝 = {1, 2, 3} . The 

slope at 0 is close to 2 and the slope at 1 is close to zero. This companding functions is simple 

to compute (1 multiply and 1 add for 𝑎 = −1) and yet reduces the alias table size by nearly a 

factor of 2 for 𝑝 = 1. 

Inverse law commanding function 

A companding function derived from an inverse law relationship is 

 𝐹(𝑥, 𝑟) =
𝑟

𝑟 − 1
(1 − 

1

𝑥(𝑟 − 1) + 1
). (71) 

The slope at 𝑥 = 0 is the reciprocal of the slope at 𝑥 = 1, and the ratio of the slope at 𝑥 = 0 to 

that at 𝑥 = 1 is 𝑟. Values of 𝑟 which give the minimum table size are {9.13, 9.27, 9.41} for 𝑝 =

Table 3 Alias Table Size 

Companding 𝑝 = 1 𝑝 = 2 𝑝 = 3 

None 1985  993  663 

Quadratic 1008  496  326 

Inverse  276  137   90 

A-law  174   86   57 
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{1, 2, 3 }. This companding function requires 1 division, 1 multiplication, and two additions to 

gives a substantial reduction in the size of the alias table. 

A-law companding function 

The continuous 𝐴-law function with 𝐴 = 87.56 (see §4.3.1) can be used as the alias table com-

panding function for the example segmented 𝐴-law quantizer. This companding function is the 

most complicated of the functions considered, but also results in an alias table considerably 

smaller than for the other companding function. 

B.3 Rounding Values on Quantizer Decision Levels 

A quantizer boundary 𝑥𝑞[𝑛] can be included either in quantizer interval below the boundary 

or in the interval above the boundary. Choosing which case applies is related to the problem of 

rounding the point mid-way between integer values [9]. Some choices are: a value on the mid-

point is rounded up (towards +∞), rounded down (towards −∞), rounded towards zero, or 

rounded upwards away from zero. Other choices include rounding alternate decision levels 

up/down. 

In this report, the definition of the quantization interval includes the lower boundary of a 

quantization interval in the interval (see Eq. (24)). In the terminology of rounding, this imple-

ments round up. 

If the input value is a floating-point value and the quantizer boundaries are also floating 

point, a quantizer boundary can be moved up incrementally to change that boundary to effec-

tively implement round down. This is accomplished by moving the boundary to the next larger 

floating-point value. A nextafter function is available in some computer languages. In Matlab, 

nextafter for floating-point values can be implemented as nextafter = @(x)(x+eps(x)). 

It the input value is integer-valued and the quantizer boundaries are integer-values, a 

boundary value can be incremented to effectively implement a round up at the boundary 

value. 


