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1 Introduction

This report provides an analysis of finite-length discrete-time responses which correspond to
linear-phase frequency responses. For these responses it is shown that the (complex) discrete-time
response has even or odd conjugate symmetry and the DTFT (discrete-time Fourier transform)
can be decomposed into a purely real response in tandem with phase terms. For real discrete-
time coefficients, there are four cases: even/odd symmetry together with an even/odd number
of coefficients. Then the real frequency response can be decomposed into the product of a real
response which only depends on which of the four cases applies, and a real frequency response
corresponding to coefficients with even symmetry and an odd number of coefficients.

In this report a discrete-time response will be shown as g[n]; the z-transform of g[n] is G(z);
and the frequency response (Discrete-Time Fourier Transform) is G(ω), where G(ω) = G(ejω).

The frequency response of a generalized linear-phase frequency response1 can be written as

G(ω) = e−jαω ejβ B(ω), (1)

where B(ω) is a real function of frequency. There is a phase contribution from each of the three
terms in this equation: the first term gives a linear-phase (corresponding to a delay of α samples);
the second term gives a constant phase β; and the third term is a real frequency response which
contributes a frequency-dependent phase of either 0 or π. The symmetry conditions requirements
on the coefficients of the time response g[n] such that the frequency response is of this form, will
be derived. If g[n] is real, it is shown that the frequency response B(ω) can be further factored if
the number of coefficients is even and/or the time response is odd-symmetric.

2 Symmetry Conditions

2.1 Simplified Case

First consider a simplified case – more complexity will be added step-by-step. The time response
g[n] will be causal with a non-zero first coefficient g[0] and non-zero last coefficient g[N − 1]. The
frequency response will be linear-phase,

G(ω) = e−jαω B(ω), (2)

1A generalized linear-phase response is the sum of a phase which is linear with frequency and a constant phase.
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where B(ω) is purely real. The inverse relationship corresponding to Eq. (2) is

B(ω) = ejαωG(ω). (3)

The goal will be to find the requirements on the coefficients of G(ω) such that B(ω) is real.
The z-transform corresponding to g[n] is

G(z) =
N−1

∑
n=0

g[n]z−n. (4)

To accommodate both even and odd numbers of coefficients, consider the up-sampling the time
samples to form g2[n], 2

g2[n] =

{
g[n/2], for n = 0, 2, 4, . . . , 2(N − 1),

0, otherwise.
(5)

The upsampling operation inserts zero-valued samples between the coefficients, giving an odd-
length sequence of length 2N − 1. The z-transform of g2[n] is G2(z), where

G2(z) = G(z2). (6)

Form an upsampled shifted response with the z-transform,

B(z2) = z2αG(z2), (7)

with the corresponding pulse response b2[n].

2.2 Integer / Half-Integer Delay

Consider the case that 2α is an integer. Then the shifted upsampled sequence, denoted as b2[n], is

b2[n − 2α] = g2[n], for 0 ≤ n ≤ 2(N − 1). (8)

For a frequency response X(ω) to be real-valued, the discrete-time coefficients must satisfy x[n] =
x∗[−n]. Identifying B(z2) with X (z), then for the frequency response B(2ω) to be real, the coeffi-

2This artifice is being introduced to solve that problem that for an even number of coefficients, the time response
g[n] cannot be shifted so as to centre it around zero.
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cients must have even conjugate symmetry,

b2[n] = b∗2 [−n], for −(N − 1) ≤ n ≤ N − 1. (9)

Given that b2[n] is just a shifted version of g2[n], and that g2[n] is of finite length, the shift must
centre b2[n] around zero. The delay α is then an integer or half-integer of the form

α =
N − 1

2
. (10)

The upsampled coefficients b2[n] will have N − 1 samples to the left of n = 0 and N − 1 samples
to the right of n = 0.

The response g[n] can be expressed in terms of the non-zero coefficients of b2[n],

g[n] = b2[2n − (N − 1)], for n = 0, . . . , N − 1. (11)

Using the conjugate symmetry of b2[n], g[n] is conjugate-symmetric about the middle of the se-
quence,

g[n] = g∗[N − 1 − n], for n = 0, . . . , N − 1. (12)

In terms of z-transforms,
G(z) = z−(N−1)G∗(1/z∗). (13)

The double conjugation (once on z and again on G(·)), leaves z not conjugated, and the coefficients
g[n] conjugated. The frequency response in Eq. (2) becomes

G(ω) = e−jω(N−1)/2B(ω), (14)

where B(ω) is real. If the coefficients g[n] are real, then B(ω) is real and symmetric. If the coeffi-
cients g[n] are complex, B(ω) is real but not symmetric.

2.2.1 General delay

For a general α, interpolate g[n] to form a bandlimited continuous-time signal,

g(t) =
N−1

∑
n=0

g[n] sinc(t − n), (15)
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where sinc(x) = sin(πx)/(πx). The discrete-time signal g[n] is linear phase if and only if g(t) is
conjugate-symmetrical about t = α [1],

g(t + α) = g∗(α − t). (16)

These terms can be expanded as follows,

g(t + α) =
N−1

∑
n=0

g[n] sinc(t + α − n),

g∗(α − t) =
N−1

∑
n=0

g∗[N − 1 − n] sinc(t − α + N − 1 − n).

(17)

The symmetry of the sinc(·) function has been used in the second line of this equation.
Set g[n] = g∗[N − 1 − n], then equating g(t + α) and g∗(α − t) requires α = (N − 1)/2. Con-

versely, set α = (N − 1)/2, then g[n] = g∗[N − 1 − n]. No other value of α together with a finite
number of coefficients will allow g(t) to satisfy the conjugate symmetry requirements.

As a side note, there are bandlimited, continuous-time signals which when sampled give a
causal infinite-extent (IIR) linear-phase discrete-time signal [1]. However, the resulting IIR re-
sponse does not correspond to a rational z-transform.

2.3 Constant Phase Term

Fix α = (N − 1)/2, and for more generality, add a constant phase term ejβ to Eq. (14),

G(ω) = e−jω(N−1)/2ejβB(ω). (18)

The constant phase term is a complex constant, independent of frequency. Then

G(z2) = ejβz−(N−1)B(z2). (19)

The relationship in terms of the coefficients of the time response is

e−jβg[n] = b2[2n − (N − 1)], for n = 0, . . . , N − 1,

ejβg∗[N − 1 − n] = b∗2 [N − 1 − 2n], for n = 0, . . . , N − 1.
(20)

Then using the conjugate symmetry of b2[n] in Eq. (9),

g[n] = ej2βg∗[N − 1 − n], for n = 0, . . . , N − 1. (21)
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or in z-transform notation,
G(z) = ej2βz−(N−1)G∗(1/z∗). (22)

2.3.1 Symmetry imposed by the constant phase term

The coefficient symmetries can be expressed using g̃[n] and G̃(z), where

g̃[n] = e−jβg[n], G̃(z) = e−jβG(z). (23)

Then
g̃[n] = g̃∗[N − 1 − n], G̃(z) = z−(N−1)G̃∗(1/z∗). (24)

If N is odd, the middle coefficient of g̃[n] is real. The z-transform with coefficients g̃[n] has the
same zeros as the z-transform with coefficients g[n].

If the phase β is equal to one of the cardinal angles 0,±π/2, or ±π, from Eq. (21) the symmetry
for g[n] is

g[n] = ±g∗[N − 1 − n], for n = 0, . . . , N − 1. (25)

Use the plus sign for β equal to 0 or ±π and the minus sign for β equal to ±π/2.
If the coefficients are real, from Eq. (21) the term ej2β must be real, i.e., β must be one of the

cardinal angles, see also [2, § 6.5.3].
The symmetry constraints imposed by Eq. (21) are shown schematically in Table 1.

Table 1 Coefficient symmetries for linear-phase responses. The first 3 rows show the
configurations for g[n] complex. The last 2 rows show the configurations for g[n] real.
In the table u and v are complex values; a, b, c, and r are real values.

β N odd N even

general ejβ [u v r v∗ u∗] ejβ [u v v∗ u∗]
0 or ±π

[
u v r v∗ u∗] [

u v v∗ u∗]
±π/2

[
u v jr −v∗ −u∗] [

u v −v∗ −u∗]
0 or ±π

[
a b c b a

] [
a b b a

]
±π/2

[
a b 0 −b −a

] [
a b −b −a

]
The rows of that table can be summarized as follows.

1. For the first line in the table, the entries give the form of g[n] = ejβ g̃[n]. For complex coeffi-
cients and a general β,

g[n] = ej2βg∗[N − 1 − n], for n = 0, . . . , N − 1

G(ω) = ejβe−jω(N−1)/2B(ω)
(26)
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If the number of coefficients is odd, the middle coefficient of g[n] must be of the form rejβ,
where r is the real middle coefficient of g̃[n].

For a set of complex coefficients, the response can be written as the product of the fixed phase
factor and conjugate-symmetric coefficients g̃[n]. The value of β can be determined from g[n]
by calculating the complex cross-correlation coefficient between the vector of coefficients
g[n] and g∗[N − 1− n]. For column vectors x and y, the cross-correlation coefficient [3, § 4.1]
is the complex scalar value

ρ(x, y) =
yHx√

xHx
√

yHy
, (27)

where the superscript H denotes the conjugate (Hermitian) transpose. Associate x with g[n]
and y with g[N − 1 − n]. For g[n] corresponding to a linear phase spectrum (i.e., satisfying
Eq. (21)). this gives the cross-correlation

ej2β = cos(2β) + j sin(2β). (28)

The angle β can have two values, separated by π. The fixed phase term exp(jβ) can be found
by computing

ejβ = cos(β) + j sin(β)

= ±
√

1 + cos(2β)

2
+ j

√
1 − cos(2β)

2
.

(29)

Choose the plus sign for sin(2β) ≥ 0 and the minus sign otherwise. This choice of signs
gives 0 ≤ β < π/2.

2. For complex coefficients and β = 0 or β = ±π, the coefficients have conjugate symmetry,

g[n] = g∗[N − 1 − n], for n = 0, . . . , N − 1

G(ω) = ±e−jω(N−1)/2B(ω)
(30)

If the number of complex coefficients is odd, the middle coefficient of g[n] must be its own
conjugate, i.e. the middle coefficient must be real.

3. For complex coefficients and β = ±π/2, the coefficients have odd conjugate symmetry,

g[n] = −g∗[N − 1 − n], for n = 0, . . . , N − 1

G(ω) = ±je−jω(N−1)/2B(ω)
(31)

If the number of coefficients is odd, the middle coefficient of g[n] must be purely imaginary
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or zero.

4. For real coefficients and β = 0 or β = ±π, the coefficients have even symmetry,

g[n] = g[N − 1 − n], for n = 0, . . . , N − 1

G(ω) = ±e−jω(N−1)/2B(ω)
(32)

5. For real coefficients and β = ±π/2, the coefficients have odd symmetry,

g[n] = −g[N − 1 − n], for n = 0, . . . , N − 1

G(ω) = ±je−jω(N−1)/2B(ω)
(33)

If N is odd, the middle coefficient is zero.

Note that a minus sign in the expressions for G(ω) can be absorbed into the real response
B(ω). Then for real coefficients, G(ω) is a linear phase shift of a purely real response B(ω) or a
linear phase shift of a purely imaginary response jB(ω).

For a real time response, the corresponding frequency response must have a phase function
which is an odd function of frequency. Yet the formulations for a real odd-symmetric g[n] show
a constant phase shift of ±π/2. This contradiction is resolved later when it is shown that for an
odd-symmetric g[n], B(ω) is zero for ω = 0. An odd number of zeros at ω = 0 results in a phase
jump of π so that the overall phase function is an odd function of frequency.

2.4 Shifted Coefficients

The final step of generality will be a shift of K samples applied to g[n],

h[n] = g[n − K], K ≤ n ≤ K + N − 1. (34)

The first non-zero coefficient is now at time n = K, and the last non-zero coefficient is at time
n = K + N − 1.

The K sample shift expressed as a z-transform is,

H(z) = z−KG(z). (35)

The z-transform H(z) will have the same singularities in the finite z-plane (0 < |z| < ∞) as G(z),
but the shift by K samples adds K poles at z = ∞ (K > 0) or K poles at z = 0 (K < 0).

The symmetry conditions for the shifted time response are

h[n] = ej2βh∗[2K + N − 1 − n], K ≤ n ≤ K + N − 1. (36)
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In terms of the z-transform this relationship is

H(z) = ej2βz−2Kz−(N−1)H∗(1/z∗). (37)

The subsequent sections revert to consideration of the coefficients g[n] and its transforms.

3 Zero Symmetries of the System Response

Consider the singularities of G(z). This causal response has N − 1 poles at the origin, and N − 1
zeros in the finite z-plane .

3.1 Zero Symmetries: Complex Coefficients

From Eq. (22), if zk is a zero of G(z), then its conjugate-reciprocal 1/z∗k is also a zero. Write zk as
zk = rkejθk . Then the conjugate-reciprocal zero is 1/z∗k = (1/rk)ejθk . Zeros on the unit circle are
their own conjugate-reciprocals, and hence can appear singly. The zero symmetries for complex
coefficients are illustrated in Fig. 1(a).

‐plane 

   

𝑗𝜙  

1
𝑟

𝑗𝜙  𝑗𝜃  

(a) Complex coefficients

‐plane 

   

   

𝑗𝜃  

െ𝑗𝜃
1
𝑟

െ𝑗𝜙  

𝑗𝜙  

1
𝑟

𝑗𝜙  

െ𝑗𝜙  

(b) Real coefficients

Fig. 1 Zero symmetries

For an odd number of coefficients N, there are an even number of zeros. Since zeros off the
unit circle occur in conjugate-reciprocal pairs, the number of zeros on the unit circle must be even.
For an even number of coefficients, there must be an odd number of zeros on the the unit circle,
i.e., there must be at least one zero on the unit circle.

The z-transform G(z) can be factored into first order and second order sections. A first order
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factor for a zero at z = ejθ can be written as

G1(z) = 1 − ejθz−1. (38)

Evaluating G(z) at z = ejω, the frequency response is

G1(ν) = 2je−jν/2 sin(ν/2), (39)

where ν = ω − θ. In this form, as θ changes, the frequency response shifts along the ω axis. The
linear phase term is e−jω/2 and the fixed phase component is jejθ/2. When the zero is at z = 1, the
fixed phase term is ejπ/2.

A second order factor for a pair of zeros at angle ϕ can be written as

G2(z) = (1 − rejϕz−1)(1 − (1/r)ejϕz−1). (40)

The corresponding frequency response is

G2(ν) = 2e−jν
(

cos(ν)− r2 + 1
r

)
, (41)

with ν = ω − ϕ. As ϕ changes, the frequency response is shifted along the frequency axis. The
fixed phase term is e−jω and the fixed phase term is ejϕ.

3.2 Zero Symmetries: Real Coefficients

For real coefficients, the zeros of G(z) must appear in conjugate-reciprocal pairs and complex con-
jugate pairs. If zk = rkejθk is a zero of G(z), then so are z∗k = rke−jθk , 1/z∗k = (1/rk)ejθk , and
1/zk = (1/rk)e−jθk . Complex zeros off the unit circle appear in fours. Complex zeros on the unit
circle appear in pairs. Real zeros off the unit circle also appear in pairs. Only zeros at z = ±1 can
appear singly. The zero symmetries for real coefficients are shown in Fig. 1(b).

For an odd number of coefficients N, there are an even number of zeros. The total number of
zeros at z = ±1 must be even. For an even number of coefficients, there are an odd number of
zeros. The total number of zeros at z = ±1 must be odd.

Using the first and second order frequency responses found for complex coefficients, the fixed
phase terms terms cancel, or are already zero, with the exception of zeros at z = 1, in which case
each such zero contributes a fixed phase of π/2.
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3.3 Constrained Zeros: Real Coefficients

For real coefficients, some of the zeros are constrained to appear at z = ±1. There are four cases
to consider, designated as linear-phase responses of Types I through IV in Table 2 (see also [4,
§ 5.7.3]). These are the cases shown in the last two rows of Table 1.

Table 2 Response type designations for linear-phase responses with real coefficients

Type Symmetry N

I g[n] = g[N − 1 − n] Odd

II g[n] = g[N − 1 − n] Even

III g[n] = −g[N − 1 − n] Odd

IV g[n] = −g[N − 1 − n] Even

Specializing Eq. (22) for real coefficients, write

G(z) = 1
2
(
G(z)± z−(N−1)G(1/z)

)
, (42)

with the + sign applying to even symmetry and the − sign applying to odd symmetry. This
relationship will be examined for z = ±1.

3.4 Zeros at z = 1

For z = 1,

G(1) = G(1)
2

(
1 ± 1

)
. (43)

The response will be zero at z = 1 for odd symmetry. Then G(z) has a zero at z = 1 for response
Types III and IV.

3.5 Zeros at z = −1

For z = −1,

G(−1) =
G(−1)

2
(
1 ± (−1)−(N−1)). (44)

The response will be zero at z = −1 if N is even and has an even-symmetric time response, or if
N is odd and has an odd-symmetric time response. Then G(z) has a zero at z = −1 for response
Types II and III.
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3.6 Fixed Root Factors: Real Coefficients

Noting the fixed roots found, separating out a factor containing the fixed roots gives

G(z) = Q(z)P(z), (45)

where Q(z) has roots only at z = ±1. The response P(z), as will be shown shortly, has an odd
number of even-symmetric coefficients. The results are summarized in the Table 3.

Table 3 Fixed factors for linear-phase responses with real coefficients

Type Description Q(z) No. Coef. P(z)

I N odd
even-symmetric 1 N

II N even
even-symmetric 1 + z−1 N − 1

III N odd
odd-symmetric 1 − z−2 N − 2

IV N even
odd-symmetric 1 − z−1 N − 1

Designate the number of coefficients in P(z) as M, then the number of coefficients in Q(z) is
N − M + 1. The symmetry of Q(z) can be expressed as

Q(z) = ±z−(N−M)Q(1/z), (46)

where the upper sign applies when G(z) is even-symmetric (Types I and II), and the lower sign
applies when G(z) is odd-symmetric (Types III and IV). Then

P(z) =
G(z)
Q(z)

=
±z−(N−1)Q(1/z)P(1/z)

Q(z)

=
±z−(N−1)[±zN−MQ(z)]P(1/z)

Q(z)

= z−(M−1)P(1/z).

(47)

In this equation, there are only two cases: G(z) is even-symmetric (use the plus signs) and G(z) is
odd-symmetric (use the minus signs). Then for all response types, P(z) is a Type I response (odd
number of coefficients and even-symmetric).
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3.7 Frequency Response: Real Coefficients

Write the frequency response corresponding to G(z) as

G(ω) = Q(ω)P(ω)

= e−jω(N−M)/2ejβQ0(ω)e−jω(M−1)/2P0(ω)

= e−jω(N−1)/2ejβQ0(ω)P0(ω).

(48)

In the equation above, B(ω) in Eq. (18) has been expressed as the product Q0(ω)P0(ω). The terms
B(ω), Q0(ω), and P0(ω) are so-called zero-phase responses.3 The zero-phase response P0(ω) can
be written as

P0(ω) =
(M−1)/2

∑
n=−(M−1)/2

p[n]e−jωn

= p[0] + 2
(M−1)/2

∑
n=1

p[n] cos(ωn).

(49)

This shows that P0(ω) is real-valued.
For each Q(z) in Table 3, determine the corresponding value of β and Q0(ω). These are shown

in Table 4.

Table 4 Zero-phase fixed factors for linear-phase responses with real coefficients

Type Description β Q0(ω)

I N odd
even-symmetric 0 1

II N even
even-symmetric 0 2 cos(ω/2)

III N odd
odd-symmetric π/2 2 sin(ω)

IV N even
odd-symmetric π/2 2 sin(ω/2)

3Zero-phase frequency responses are real-valued. Zero-phase responses have a phase of 0 for those frequencies
where the response is positive and a phase of ±π where the response is negative.
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3.8 Notes on the Factors of the Frequency Response

1. The Q0(ω) term captures at most one zero at ω = 0 and/or at most one zero at ω = π. If
the zeros are of odd multiplicity, one of the zeros is assigned to Q0(ω) and the remaining
zeros to P0(ω). If the zeros are of even multiplicity, all of the zeros are assigned to P0(ω). As
a consequence, P0(ω) can include zeros at ω = 0 and ω = π and those zeros will be of even
multiplicity.

2. Since the frequency response of responses of Type II or Type III have a null at ω = π due
to Q(ω), they are unsuitable for the implementation of highpass responses. Since the fre-
quency response of responses of Type III or Type IV have a null at dc due to Q(ω), they are
unsuitable for the implementation of lowpass responses.

3. The zero-phase factor P0(ω) in Eq. (49) is periodic in ω with the requisite period of 2π.
However, for even response lengths (Types II and IV), the zero-phase factor Q0(ω) in Table 4
is periodic with period 4π. It is the linear-phase term in Eq. (48) which will ensure that the
overall response has period 2π. Designate the linear-phase term as L(ω) = e−jω(N−1)/2.

L(ω + 2π) =

{
L(ω), N odd,

−L(ω), N even,

Q0(ω + 2π) =

{
Q0(ω), N odd,

−Q0(ω), N, even.

(50)

The product L(ω)Q0(ω) is periodic, with the “proper” period 2π for both odd and even N.

The plots in Fig. 2 show the effect of Q0(ω) on the frequency response. The top pair of plots
(Type I) shows the pulse response and the corresponding zero-phase frequency response B(ω).
For the second pair of plots, Q0(ω) for Type II filters is applied to the pulse response of the Type I
pulse response. The resultant frequency response has a fixed null at ω = π. For the third pair of
plots, Q0(ω) for Type III filters is applied giving a odd-symmetric pulse response and a frequency
response with a fixed null at ω = 0 and at ω = π. Finally, for Type IV, the frequency response has
a fixed null at ω = 0.

For each response shown in Fig. 2, the number of degrees of freedom (the number of real
values needed to fully describe the pulse response) when symmetries and fixed values are taken
into account, is the same. In the figure, 6 values specify each of the pulse responses.
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I

II

III

IV

Fig. 2 Plot of the pulse response and frequency response of B(ω) = Q0(ω)P0(ω) for
different types of responses. In all cases, P0(ω) is the same, but Q0(ω) is chosen based
on the response type. The pulse responses have been normalized to unit energy. The
frequencies where the frequency response is constrained to be zero are marked with
circles.

Application to Filter Design

A standard filter design strategy is to specify a desired frequency response D(ω). The weighted
error between the realized filter G(ω) and the desired response is

EW(ω) = W(ω)[G(ω)− D(ω)], (51)
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where W(ω) is a weighting function. A function of the weighted error EW(ω) is to be minimized
during the design process. The well-known McLellan-Parks algorithm for designing linear-phase
FIR filters minimizes max(|EW(ω)| at a dense set of frequency points [5]. The basic algorithm is
formulated for Type I filters. To allow for the other types of filters, we can express G(ω) as the
product Q(ω)P(ω). The weighted error can be written as

EW(ω) = W(ω)[Q(ω)P(ω)− D(ω)]

= W(ω)Q(ω)[P(ω)− D(ω)/Q(ω)]

= W̃(ω)[P(ω)− G̃(ω)].

(52)

By absorbing the frequency response of Q(ω) into the weighting function and the desired re-
sponse, the design strategy for the Type I filter P(ω) can be used. The final filter G(ω) is then
Q(ω)P(ω).

4 Sampled Frequency Response

The goal of this section is to derive the time response g[n] given samples of the zero-phase re-
sponse B(ω). This is possible since the z-transform is in the form of a polynomial. The coefficients
of an N term polynomial can be calculated from N distinct samples of the z-transform, for instance
samples of the frequency response.

Samples of B(ω) will be the starting point. Using uniformly-spaced samples of B(ω) will
simplify the calculation of g[n]. Let the samples of B(ω) be taken at the N points ωk,

ωk =
2πk
N

+ ω0, for k = 0, . . . , N − 1. (53)

Now form the samples of G(ωk) using Eq. (48). When the offset ω0 = 0, the samples G(ωk) are the
discrete Fourier transform (DFT) of g[n]. Then g[n] can be found as the inverse DFT of G(ωk). For
the more general sample points ωk given in Eq. (53), a modified inverse DFT formulation can be
developed,

g[n] =
1
N

N−1

∑
k=0

G(ωk)ejωkn, for n = 0, . . . , N − 1. (54)

For a real discrete-time response g[n], B(ω) is symmetric. Then it is useful to choose ω0 such
that the samples of B(ωk) symmetrically sample B(ω). For ω0 = 0, the samples have a DFT sym-
metry, B(ωk) = ±B(ωN−k). For ω0 = π/N, the sampling points are offset and are symmetrical
about ω = π, giving B(ωk) = ±B(ωN−1−k).

The modified IDFT formula Eq. (54) operates on complex-valued samples to calculate g[n].
Standard approaches can be used to reduce the complexity of the computations, with the resulting
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formulas depending on the type of filter (I, II, III, or IV) and the sampling pattern ωk. Reference [6,
§ 10.2.3] applies these formulas to design linear-phase FIR filters specified by the samples B(ωk).
Examples of lowpass filters designed with this approach are given. The passband samples are set
to a constant value and the stopband samples are set to zero. The transition region samples are set
to the optimized values determined in [7].

5 Summary

For complex coefficients,
G(ω) = ejβe−jω(N−1)/2B(ω), (55)

where B(ω) is real. The coefficients of the generalized linear-phase response obey

g[n] = ej2βg∗[N − 1 − n], for n = 0, . . . , N − 1. (56)

For real coefficients, the response B(ω) can be expressed as the product of two zero-phase
responses,

G(ω) = ejβe−jω(N−1)/2Q0(ω)P0(ω). (57)

The term Q0(ω) is a real response which depends only on whether the response is even or odd
length, and whether the response is symmetric or anti-symmetric. The factor P0(ω) is real. For
real coefficients, β is restricted to be 0, ±π, or ±π/2, giving

g[n] = ±g[N − 1 − n], for n = 0, . . . , N − 1. (58)
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