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Abstract 

The performance of su d coders relies on the a ,bility of analysis and recon- 

struction filter banks to provide good isolation between contiguous frequency bands 

of speech signals. In general, analysis/reconstruction filter banks introduce, to some 

degree, aliasing, amplitude distortion and phase distortion to the reconstructed sig- 

nal. These impairments as well as the overall system delay and implementation 

complexity are the major issues in the design of filter banks for subband coding 

sys tems . 

This study presents a detailed discussion of the different filter families that 

deal with the above issues. The discussion includes linear phase quadrature mir- 

ror (QMF) filters, IIR-QMF filters, Pseudo-QMF filters and nonlinear phase time- 

reversed QMF filters. Emphasis is given to nonlinear phase time-reversed QMF 

filters since they can be designed to remove all three types of distortion from the 

reconstructed signal. These filters are designed using the McClellan-Parks algo- 

rithm. Experimental results show that the amplitude distortion introduced by 

time-reversed QMF filters when implemented with finite precision arithmetic is 

negligible. 



Sommaire 

La performance des codeurs & sous-bandes de frdquence dkpend de la qualiti 

de la banque de filtres d'analyse et de reconstruction pour permettre une bonne 

isolation des bandes de frdquences adjacentes du signal de parole. En gdnkral, la 

banque de filtres d'analyse/reconstruction introduit, h un certain degrk, un recou- 

vrement de spectre, de m6me que des distortions d'amplitude et de phase, sur le 

signal reconstruit. Les trois types de distortion, en plus du dklai global et de la 

complexitd d'implantation du systkme, sont les problkmes majeurs A traiter dans la 

construction des banques de filtres pour les systkmes de codage B sous-bande. 

Cette ktude prisente une discussion ddtaillke des diffkrentes familles de filtres 

qui traitent les diffdrents problkmes prd-citks. Cette discussion englobera les filtres 

miroirs a phase lineaire (QMF), les filtres IIR-QMF, les filtres Pseudo-QMF et les 

filtres QMF temporellement renversks ii phase non-linkaire. L'emphase sera port6 

sur le dernier type de filtres puisqu'ils peuvent 6tre construits de faqon A kliminer les 

trois types de distortion. La construction de ces filtres est faite selon I'algorithme de 

McClellan-Parks. Les rksultats expkrimentaux montrent que pour les filtres QMF 

temporellement renversks on obtient un taux de distortion d'amplitude nkgligeable 

lorsque celui-ci est implement6 avec une prkcision mathimatique finie. 
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Chapter 1 Introduction 

Subband coding (SBC) is a frequency domain coding technique in which the 

input signal is decomposed into a number of subbands so that each of these fre- 

quency bands can be encoded separately. This technique was originally proposed 

by Crochiere, Webber and Flanagan [I] as a means to reduce the effect of quan- 

tizing noise due to coding and therefore to improve the quality of speech coding 

systems. Encoding in subbands offers several advantages that can be effectively 

used to achieve noise reduction. The main advantages of this approach are the 

following: 

o The quantizing noise that is generated in a particular subband is limited to 

that band in the reconstruction, without being allowed to spread to other 

bands where there may be less signal energy. 

o Bit resources can be allocated in such a way so that the number of quantizer 

levels and hence the reconstruction error variance can be separately con- 

trolled in each band. As a result, the shape of the quantizing noise spectrum 

can be controlled as a function of frequency. This property is very important 



especially when certain parts of the spectrum of the encoded signal appear to 

be more important than others, i.e. speech signals where the low-frequency 

bands must be preserved with more accuracy than high-frequency bands, 

given limited bit resources. 

ANALYSIS RECONSTRUCTION 

Fig. 1.1 Subband Coding System 

In 'the subband coding system shown in Fig. 1.1, the input signal, after being 

sampled at its Nyquist rate, is divided into channels by first being passed through 

a bank of bandpass filters. The output of each filter is decimated to a rate deter- 

mined by the bandwidth of the channel and then each of these channel outputs 

are encoded separately using adaptive pulse code modulation (APCM) or adaptive 

differential pulse code modulation (ADPCM) coders. At the receiver the signals, 

after being decoded, are interpolated back to the original sampling rate by a bank 

of interpolation filters and then are summed to reconstruct the input signal. 

It is important that in subband coding systems the individual channel signals 

- 2 -  ' 



be decimated in such a way that the number of samples coded and transmitted 

does not exceed the number of samples in the original signal since this number is 

necessary and sufficient for the recovery of the original signal (Papoulis [2]). Under 

this constraint and in the absence of the channel coders, the overall system response 

indicates the quality of the system. Ideally, the filtering part of the system must 

be reversible (31, i.e. the overall system response must be a pure delay so that the 

input signal can be perfectly reconstructed at the receiver. However, in general 

reversibility can not be achieved and subband coding systems suffer from three 

different types of distortion, interband aliasing, amplitude distortion and phase 

distortion. Clearly the quality of the reconstructed signal can be no better than 

the quality of the system response. On top of that, the quality of the reconstructed 

signal degrades further, if coders are introduced to the channels. 

Over the past several years, a number of subband coding systems have been 

introduced in an attempt to minimize or remove the three types of distortion men- 

tioned above as well as to minimize the overall number of computations needed for 

the implementation of these systems. The original subband coding system which 

was presented by Crochiere, Webber and Flanagan [I], used finite impulse response 

(FIR) filters and the overall response of the system suffered from aliasing and am- 

plitude distortion as well as distortion due to coding. In a later work presented 

by Crochiere [4], infinite impulse response (IIR) elliptic filters were used. These 

filters introduce, to some degree, phase distortion as well. Croisier, Esteban and 

Galand [S] in their work managed to remove the interband aliasing by introducing 



the concept of quadrature mirror filters (QMF) to realize a two band splitting anal- 

ysis/reconstruction system. The input signal could be divided into more subbands 

by using this two band splitting system in a tree-structure. It was also shown that 

if equal length, linear phase, finite impulse response (FIR) quadrature mirror fil- 

ters (QMF) are used, phase distortion is also eliminated leaving only the amplitude 

distortion. 

The amplitude distortion can not be removed by using linear phase FIR-QMF 

subband splitting, except for the trivial case in which the resulting filters have no 

frequency selectivity. Johnston [6] though, by using an iterative approach, designed 

a number of linear phase FIR filters which produce minimum amplitude distortion 

in the overall system response. A new design approach which uses the same criteria 

as Johnston's was later presented by Jain and Crochiere [7]. 

The tree-structured QMF band-splitting with linear phase FIR filters allows 

some reduction to the computation load due to some similarities between the coeffi- 

cients of the highpass and the lowpass filters of the two band system. This approach 

also results in subbands with nonsimilar frequency characteristics with respect to 

their transition bands and stopbands. A technique, first presented by Rothweiler 

[8] and Nussbaumer [9],[10] introduced a new approach for splitting the signal into 

subbands. This technique uses a new set of bandpass filters (known as Pseudo- 

QMF filters) which are derived by frequency translating a single prototype lowpass 

filter. It assumes that only the aliasing between adjacent bands is important and 

is to be removed. With this technique, the resulting subbands have similar fre- 



quency characteristics with respect to their transition bands and stopbands. Also, 

the implementation complexity of the system can be reduced considerably by using 

a polyphase network and an FFT to implement the analysis/reconstruction filter 

banks. The fact that this technique does not attempt to remove all the inter- 

band aliasing, is not that important since simulation results [lo] proved that the 

performance of systems implementing this technique is comparable to that of the 

conventional tree-structured QMF systems. 

A subband coding system that divides the input signal into N equal-width sub- 

bands using tree structured QMF band-splitting can be also realized by using a 

parallel QMF filter bank (Nussbaumer and Galand [Ill). This filter bank has its N 

bandpass filters derived directly from the QMF filters of the equivalent tree struc- 

ture and has the same characteristics with respect to perfect aliasing cancellation 

in decimation/interpolation operations and overall system response. Although the 

realization of a subband coding system with parallel QMF filter banks is less effi- 

cient than with tree structured QMF band-splitting in terms of computation load 

[Ill, parallel QMF filter banks appear to be more attractive for practical imple- 

mentations. The computation load can be reduced to the tree technique's level, by 

truncating the impulse response of the bandpass filters, while keeping the residual 

aliasing noise due to imperfect cancellation of aliasing terms as well as the band- 

pass ripple and the stopband rejection below the acceptable upper bounds. Parallel 

QMF filter banks provide a smaller group delay, require less memory for signal 

storage, and have simplified or reduced house-keeping operations (pointer updating 



and delay shift lines). 

As mentioned before, the ideal subband coding system is the one that allows 

no interband aliasing and has an overall analysis/reconstruction transfer function 

equivalent to a pure delay. ~ l t h o u g h  Johnston [6] managed to design linear phase 

QMF filters which resulted in minimum amplitude distortion and no phase distor- 

tion or interband aliasing, the issue of completely removing the amplitude distortion 

or designing the ideal (reversible) system with none of the three types of distortion 

present was not discussed in any of the previously mentioned studies. Barnwell, 

in his analytical study on subband coding systems [12], showed that it is possible 

to remove the interband aliasing among the channels and have an overall analy- 

sis/reconstruction transfer function with either no phase distortion or no amplitude 

distortion. With the filters he used, it was shown that it was not possible to remove 

both phase and amplitude distortion at the same time. To remove the phase dis- 

tortion, the method first introduced by Esteban and Galand [13] with linear phase 

FIR-QMF filters was used. To remove the amplitude distortion all-pole equalizers 

were introduced which lead to the design of IIR-QMF filters. The introduction 

of IIR filters can reduce the computation load while at the same time improving 

the quality of the system's performance due to the absence of amplitude distortion. 

However, Barnwell showed experimentally that IIR filters can be effective only when 

are used in the outermost splits of a tree decimation structure. Systems which meet 

this condition, were found to have slightly better quality and a slightly improved 

computational complexity than linear phase FIR-based systems. 



In a recent work by Smith and Barnwell [14], the conditions for the ideal (re- 

versible) system were developed and the general method for designing high quality 

analysis/reconstruction filters was given. The conditions developed, lead us to a 

new family of quadrature mirror filters with finite impulse response but nonlinear 

phase. For a particular channel, the reconstruction filter has an impulse response 

which is the time-reversal of the impulse response of the analysis filter. Also the 

impulse response of the analysis and reconstruction filters in cascade must obey 

certain conditions which will be discussed in a later chapter. 

Smith and Barnwell, as it is evident in their work [14], designed the system 

and developed the conditions for reversibility using noncausal filters for the analy- 

sis and the reconstruction of the input signal. Although in many cases, analytical 

results obtained by using noncausal filters are the same as by using causal ones, in 

this particular case, due to the relationship between the highpass and the lowpass 

filters, the conditions prove to be slightly different. Taking the basic idea from 

the work of Smith and Barnwell but using causal filters, we present new conditions 

for a reversible causal system. Based on these conditions, we then develop a filter 

design procedure that  makes use of a modified version of the McClellan-Parks algo- 

rithm [15] to  design equiripple as well as non-equiripple filters. Charts showing the 

performance of these filters in isolating frequency bands are also presented and dis- 

cussed. Finally, we perform experiments to observe the effects when finite precision 

arithmetic is used to implement these filters. 



Chapter 2 Continuous-Discrete-Time Signals 

2.1 Introduction 

A signal can be defined as a function that conveys information generally about 

the state or behaviour of a physical system and in mathematical terms is represented 

as a function of one or more independent variables. Our interest is concentrated on 

signals with one independent variable (discrete or continuous), which by convention 

we refer to as time. 

Since the independent variable can be either continuous or discrete, we can dis- 

tinguish between signals which are continuous-time and discrete-time. Continuous- 

time signals are signals which are defined at a continuum of times and therefore 

are represented by continuous variable functions, whereas discrete-time signals are 

signals which are defined at discrete times and are represented by discrete variable 

functions, i.e. sequences of numbers. As we will see in Section 2.2, it is possible 

for a discrete-time signal to convey the same information as a continuous-time one 

provided that certain bandlimitedness conditions ho d. 



In addition to the fact that time can be either continuous or discrete the ampli- 

tude of the signal may be either continuous or discrete. Signals that are continuous 

in time and amplitude are called analog signals, where signals that are discrete in 

time and amplitude are called digital signals. Similarly, signal processing systems 

may be classified as continuous-time systems if both the input and output signals 

are continuous-time, discrete-time systems if both the input and the output signals 

are discrete-time, analog systems if both the input and the output signals are analog 

and digital systems if both the input and the output signals are-digital. 

2.2 Sampling of Continuous-time Signals 

It is possible for a discrete-time signal to convey the same information as a 

-- 
continuous-time one, provided that certain conditions hold. That means, it is the- 

oretically possible to convert a continuous-time signal to a discrete-time one and 

then convert it back to the original continuous one without loss of information. The 

conditions which can be found in [16] are briefly discussed in this section. 

Consider the analog signal za,(t), that has a Fourier transform X , ( f )  such that 

za ( t )  e-j2*f dt 

If the signal z a ( t )  is periodically sampled with sampling period T, it results in 

a sampled signal z,(t) that is given by the equation 

$00 

x8 ( t )  = x a ( . ~ T ) C ( t  - nT) 
n=-00 



where 6 ( t )  is the unit impulse function. The Fourier transform of x,(t) is given by 

the equation 

An alternate expression for Xs( f )  derived from Eq. (2.3) and the definition of the 

Fourier transform given by Eq. (2.1), is 

TO recover X,(f) from X,(f) (reconstruction of the original signal from its 

r 
samples), we have to operate on X8 (f)  in such a way so as to eliminate the Xa(f + T )  

for r # 0 terms, leaving only the Xa(f)  term. This can be done only when there is 

r 
no overlap between the Xa(f) and the Xa(f + T ) ,  r # 0 terms. The conditions for 

no overlap are: 

Xa(f) = 0 If 1 > fmax (2.6.a) 

i.e. the signal must be band-limited and the sampling rate fs must be greater than 

twice the maximum frequency (f,,) . 

Given the above conditions, X,(f) can be recovered by using an ideal lowpass 

filter with a cutoff frequency fc that satisfies the inequality, 

The minimum sampling rate that can be used without loss of information, is equal 

to twice the maximum frequency (2 f,,). If the sampling rate is less than 2 j,,, 

the recovered signal suffers from al..'asing. 
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Referring to Eq. (2.4), we can note that if the above conditions are true, the fre- 

quency characteristics of xa (t) can be determined by examining the characteristics 

of x,(t) in the range 0 5 f 5 f,,. 

2.3 Discrete-Time Signals-Sequences 

Discrete-time system theory is concerned with the processing of signals that 

are represented by sequences of numbers. The notation we use for a sequence of 

numbers x is [x(n)] where, n takes on integer values and z(n) denotes the nth 

number (or sample) in the sequence. 

A sequence 

equation 

[z(n)] has a Fourier Transform x(ejW) [16] which is given by the 

where w is called the radial frequency. The Fourier transform x(e jW)  is a continuous 

periodic function in w with period equal to 27r. 

The sequence [x(n)] can be derived from X(eJW) by taking the inverse Fourier 

transform which is defined as, 

Often discrete-time signals are derived from continuous-time signals by periodic 

sampling. We consider again the continuous-time signal xa(t) which is sampled 

with sampling period T to produce the impulse train x,(t). We also consider the 

sequence [x(n)] derived from x,(t) such as, 



From Eq. (2 .5 )  and the definition of Fourier transform for discrete-time signals (2 .8) ,  

we find that, 

X 8 ( f )  = X (  B f * f T )  (2 .11)  

Therefore, it is possible to relate the radial frequency w of a discrete-time system 

to the frequency f  of a continuous-time system through the relationship, 

We can see that the sampling rate f8 = 1 / T  corresponds to the radial frequency 

w = 2n. If the minimum sampling rate ( f 8  = 2fm,) is used, then the maximum 

frequency f,, corresponds to the radial frequency w = n. 

The z-transform of a sequence [ x ( n ) ]  is defined as, 

where z is a complex variable. The unit delay z-I represents a delay of one sample 

and if the sequence [ z ( n ) ]  is derived by sampling a continuous-time signal, it cor- 

responds to a time delay equal to the sampling period T. The z-transform can be 

considered as a generalization of the Fourier transform since the Fourier transform 

x ( e j w )  can be derived from X ( z ) ,  if z = e jw .  On the complex z-plane, x ( e j w )  is 

derived by evalucting X ( Z )  on the unit circle,  i.e. Izl = 1. 
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2.3.2 Sub-Sampling 

The operation of sub-sampling a sequence can be interpreted as resampling a 

sequence. In mathematical terms, the sub-sampled sequence [x8 (n ) ]  is defined, in 

terms of the sequence [x(n) ]  as, 

x,(n) = x(nR + r )  

where R is the sub-sampling ratio and takes only integer values and r is an ofset 

normally taking values 0 5 r 5 R - 1. We should note that the operation of sub- 

sampling in discrete-time signals corresponds to an increase of the sampling period 

T to RT in continuous-time signals. 

It is desirable to express the z-transform X 8 ( z )  of the sub-sampled sequence 

[x8(n)]  in terms of X ( z ) ,  R and r. The expression for the simple case where r = 0 

can be found in problem 2.21 of [16]. The derivation of the formula for the general 

case where 7 # 0 is taken from [3]. The final expression is given below. 

The Fourier transform X8(ejw) can be derived by allowing the substitution z = ejw 

in Eq.  ( 2 . 1 5 )  which gives 

We should note that the unit delay in the z-transform of the sub-sampled 

sequence X8 ( z )  corresponds to a time delay of RT and the w in the Fourier transform 

W 
x 8 ( e j W )  corresponds to a frequency f = - 27rRT in continuous-time signals. 
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From Eq. (2.16), we can observe that the frequency response of the sub-sampled 

sequence X, (ejw) is the sum of frequency translations of the response of the original 

sequence x(ejW).  We would like to establish the conditions under which the original 

sequence x (e jw)  can be reconstructed from the sub-sampled sequence X, (ejw ) . For 

an alias-free reconstruction, no overlapping must occur between the ~ ( e j t )  term 

and the t ) for 1 # 0 terms of Eq. (2.16), i.e. 

Equation (2.17.b) is true when x (e jw)  is defined as, 

I = 0 elsewhere 

for 0 < w < 7r and k = 1,. . . , R. These conditions correspond to the ideal case and 

are the required conditions for a perfectly alias-free reconstruction. 

2.3.3 Interpolation-Rate increase 

Interpolation involves inserting new samples between existing samples of a se- 

quence with values derived from the values of the existing samples. This operation 

can be viewed as occuring in two steps. First the number of samples (sampling 

rate) is increased by a factor of R by inserting R - 1 zero valued samples between 

the samples of the original sequence. The new sequence is then processed to modify 
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the values of the R - 1 intermediate sample values. The processing considered here 

is linear filtering. 

We consider the original sequence [z8(n)] and the sequence [z (n)] to be the 

sequence after R - 1 null samples are inserted between the existing ones. We express 

zf (n) in terms of z8 (n) as follows, 

n - r  
for n = mR + r (m integer) 

.elsewhere 

where R is the interpolation rate and r is an offset. The z-transform Xf (2) of z (n) 

becomes, 

Xf ( z )  = Z - ~ X ~  (zR) 

and the Fourier transform becomes, 

Finally, the interpolated sequence [zi(n)] is obtained by filtering zf(n)  with a filter 

H ( 4  

Xi ( z )  = Z - ~ X ~  (zR) H (z) 

2.4 Subband Analysis 

The purpose of subband analysis is to split the signal into a number of differ- 

ent frequency bands which will be transmitted separately. This can be generally 

achieved by using a bank of bandpass filters with different centre frequencies. The 
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ANALYSIS/RECONSTRUCT ION 

Fig. 2.1 Subband Analysis System 

configuration of Fig. 2.1 considers a simple subband analysis system with N narrow 

band filters. In the case of subband coding where each band is coded individually 

the narrow band filters of the system are essentially non-overlapping. 

2.4.1 Reversibility 

Our concern is whether the signals at  the outputs of the filters contain all the 

information of the input signal. If true, we should be able to reconstruct the original 

signal from this information. Reversible systems are the systems which allow perfect 

reconstruction of the input signal which means that they must have overall response 

equivalent to a pure delay. In the simple arrangement of Fig. 2.1 reversibility can 

be achieved only if 

where G ,  is a gain. In the discussions to follow any gain G ,  # 0 will be acceptable 

since it can be easily removed with a simple scaling of all the output filter coefficients 
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2.4.2 Information Rate 

Considering again the simple subband system of Fig. 2.1, we observe an increase 

of the overall sampling rate by a factor of N. This means that the outputs of the 

analysis filter bank contain redundant information concerning the input signal. It 

is possible to remove the redundant information by sub-sampling the output of 

each subband with a sub-sampling ratio defined by the ratio of the input signal's 

bandwidth to the subband's bandwidth. 

ANALYSIS RECONSTRUCTION 

Fig. 2.2 Sub-sampling in a subband analysis system 
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A subband system which uses sub-sampling of the subbands to remove the re- 
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dundant information is shown in Fig. 2.2. The input signal is passed through a 

filter bank to produce N bandpass signals. Each of those signals is frequency trans- 

lated and filtered to produce a lowpass signal and then sub-sampled according to 
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its bandwidth. In general, frequency translation is required prior to sub-sampling 

in order to avoid any aliasing due to overlapping of the original and the frequency 

translated signals which result from the sub-sampling operation. The translation 

frequency of a particular subband that can be used for an alias-free and minimum 

bandwidth lowpass signal, is the frequency of the upper or lower edge of this par- 

ticular subband. Filtering is required after the frequency translation to remove the 

highpass components that resulted from the frequency translation operation. At 

the receiver, the subbands are interpolated back to the original sampling rate and 

frequency translated to their initial posit ions. Bandpass filtering is required to re- 

move all the external frequency components and then the subbands are combined 

together to reconstruct the original signal. 

2.4.3 Fractional-Band Filters 

One case of interest involves a uniform structure with the same sub-sampling 

ratio in each subband (Rk = N). Clearly the nominal bandwidth of the subbands 

must be the same and equal to 1/N of the signal's bandwidth. The sub-sampling 

ratio is assured to take on integer values only. For a particular subband, if the ratio 

of the bandwidth of the signal to the bandwidth of the subband (which defines the 

sub-sampling ratio), is not an integer number, then the next larger integer number 

is taken to be the sub-sampling ratio. The use of this method usually results in an 

overall sampling rate which is greater than the sampling rate of the input signal 

unless equal bandwidth subbands are used which result in a system with no increase 
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in the overall sampling rate. 

In such a system, the bandwidth of the kth subband k = 0 , l . .  . , N - 1 is given 

by 

The translation frequency wk can be either the lower edge frequency kn/N or the 

upper edge frequency (k + l)7r/N since both frequencies can produce an alias-free 

minimum bandwidth lowpass signal. 

If the translation frequencies are considered according to the formula, 

for k even 

wk = 1 (k + q 7 r  

N for k odd 

the frequency translation operation at the transmitter is not required at all. This is 

due to the fact that in a frequency translation operation, the samples are multiplied 

by cos(wkn). The constraint imposed on the translation frequencies wk by Eq. (2.25) 

makes the samples selected by the sub-sampler to be always multiplied by unity. 

The above result can be also obtained from Eq. (2.18). The bandwidths of the 

subbands of an equal-bandwidth subband system completely satisfy Eq. (2.18) if 

R = N. Therefore, the subband signals can be sub-sampled without the require- 

ment of previously being frequency translated into lowpass signals. Under the same 

conditions, the receiver can be also simplified. Instead of interpolating with a low- 

pass filter and then frequency translating, the two operations can be combined. 

In this case, each 

bandpass filter. 

of the sub-sampled signals is interpolated with the appropriate 



ANALYSIS RECONSTRUCTION 

-H0(z)  - N:1 1:N -I+) ' 
- 

H,(z) 
- N:l  - D-- I  1:N - G l ( z )  - 

C E 

x ( n ) - ~ ~ ( Z )  - N:l - 0 - - I:N t 2 ( z )  - y(n) 

I 
I I 
I I 

I 
I 

N: 1 

ANALYSIS' DOWN UP RECONSTRUCTION 
SAMPLING BANK SAMPLING FILTER 

BANK 

Fig. 2.3 Subband .analysis system with fractional filters 

The result of the above discussion is the simplified subband analysis system 

shown in Fig. 2.3. The overall response of this system with input signal X(z)  and 

output signal Y(z) is derived using Eq. (2.15), Eq. (2.20) and Eq. (2.22). 

where H;(z) and G;(t) are the filters of the i'th subband on the transmitting and re- 

ceiving side respectively. It is expected that H;(z)  and G;(z) have similar frequency 

characteristics in terms of their passband and stopband. 

If reversibility is to be achieved as described by the equation 

the following conditions must be obeyed. 

I N-1 0 for I # 0 
C Hi(= 
a=O z k  for I = O 



The 1 # 0 terms are the aliasing terms which must be eliminated. A simple sys- 

tem which obeys the above conditions is the ideal  system where the filter Fourier 

transforms are defined as, 

( 0 elsewhere 

Filters with such frequency characteristics can not be exactly realized but only 

approximated. As a result, subband systems generally suffer from three different 

types of distortion, aliasing due to nonperfect cancellation of the aliasing terms (the 

1 # 0 terms of Eq. (2.26) ), amplitude distortion and phase distortion due to the 

fact that the I = 0 term of Eq. (2.28) is not equal to a perfect delay as indicated 

for a reversible system. 

In the following chapters we will discuss the means to remove or minimize any 

of the three types of distortion. 



Chapter 3 Quadrature Mirror Filters (QMF) 

- 
3.1 Introduction 

Subband systems, as mentioned in Chapter 1, were first introduced by Crochiere, 

Webber and Flanagan [I] as a means to reduce the effect .of quantizing noise due to 
-- 

coding. Ideally, these systems should not introduce any distortion to the input signal 

in the absence of the individual channel coders. The conditions on the analysis and 

the reconstruction filters for a distortionless reconstruction of the input signal are 

given by Eq. (2.28). Except for special cases, these conditions cannot be completely 

satisfied and the reconstructed signal suffers, to some degree, from three different 

types of distortion, aliasing, amplitude and phase distortion. Aliasing is due to the 

nonperfect cancellation of the aliasing terms generated by the sub-sampling oper- 

ation whereas amplitude and phase distortion are due to the frequency and phase 

characteristics of the filters used for the analysis and the reconstruction of the input 

signal. 

In the original subband coding systems reported in [1f,[4], the analysis/reconstruction 



filters used were either linear phase finite impulse response (FIR) or infinite impulse 

response (IIR) elliptic filters. Systems with linear phase FIR filters introduce only 

aliasing and amplitude distortion to the input signal whereas systems with IIR filters 

introduce phase distortion as well. Croisier, Esteban and Galand [5],[13] managed 

to remove the aliasing introduc,ed by a two band subband system by using a s p e  

cia1 kind of half-band filters known as quadrature mirror filters (QMF). It was also 

shown that if equal length linear phase filters are used, the overall system response 

has linear phase and hence the reconstructed signal does not suffer phase distortion. 

The key points of the QMF technique are discussed in this chapter. 

3.2 Half-Band Filters 

ANALYSIS RECONSTRUCTION 
CODER/DECODER 

Fig. 3.1 Two band subband system 

The subband system shown in Fig. 3.1 is the simplest form of the general system 

shown earlier in Fig. 2.3 which uses fractional-band filters. The filters here are 

called half-band filters since they divide the input signal into two equal-width bands. 

Although simple, this system is very important since it can be used as a building 

block in a tree structure to divide the signal in,to more subbands. 
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The overall response of the system can be derived from Eq. (2.26). For N = 2, 

1 + Z ~ ( - z ) { ~ o ( - 4 ~ o ( 4  + ~ 1 ( - " ) ~ 1 ( " ) ]  

The second term represents aliasing. Aliasing is eliminated if the following condition 

holds, 

Ho(-z)Go(z) + Hl(-z)Gl(z) = 0 (3.2.a) 

A simple way satisfy this condition is by allowing 

and 

G1(z) = -Ho(-2) 

which results in an overall response 

1 
Y ( 4  = j { ~ o ( z ) ~ l ( - 4  - ~ 0 ( - 4 ~ 1 ( 4 ] ~ ( 4  

3.3 Quadrature Mirror Filters (QMF) 

Consider the half-band filters with frequency responses as shown in stylized 

fashion in Fig. 3.2. By closely examinj::ig these responses, we observe that one is the 
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rad 

Fig. 3.2 Quadrature Mirror Filters 

mirror image of the other with respect to w = n/2  which is the cutoff frequency of 

both the highpass and the lowpass filters. It can also be observed that the response 

of the highpass filter can be derived by frequency translating the frequency response 

of the lowpass filter by w = n, i.e. 

Half-band filters with real coefficients that satisfy Eq. (3.5), also satisfy the equation, 

This shows that they are symmetric about w = 7 ~ 1 2 .  These filters are known as 

quadrature mirror filters or QMF filters. 

Equation (3.5) imposes no constraints on the phase characteristics of the filters. 

One family of half-band filters that satisfy Eq. (3.5) requires that, 

These filters can be used in the subband system of Fig. 3.1. For an alias-free 

reconstruction, the followinp conditions which are derived from Eq. (3.3.a) and 
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Eq. (3.3.b) must hold, 

and 

This results in an overall response 

Consider the conditions under which the system is reversible, i.e. 

where G ,  is the overall system gain. The left-hand side of the equation can be 

expanded to 

By definition, the z-transforms of the causal filters Ho(z) and Ho(-z) can be written 

where ho(n) is the nth filter coefficient. The first part of Eq. (3.11) can be written 

= 2 ho(n)z-" 
n even 



the second part as, 

n odd 

and the overall response as, 

H ~ ~ ( Z ) - H ~ ~ ( - Z ) = ~  h ~ ( n ) h o ( " ) ~  - (u+n) 

n even u odd 

=4ho(0) ho (1)~-' 

. . . 
For reversibility, only one of the above factors should be nonzero, otherwise the 

signal will suffer distortion. Clearly, if the filter Ho(z) has even or odd numbered 

coefficients only, the overall system response is zero. On the other hand, if more 

than two coefficients'are nonzero, more than one of the above factors is nonzero and 

the signal suffers distortion. Therefore, for a reversible system, Ho(z) must have 

the form, 

where, q is an odd integer and p is any integer. Filters of the above form do not have 

good frequency selectivity. Therefore, it is expected that if we use quadrature mirror 

filters that satisfy Eq. (3.8) but which do not satisfy Eq. (3.16), the reconstructed 

signal will suffer from amplitude and possibly phase distortion. 
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3.4 Linear Phase QMF Filters 

It is possible, as shown in [13], to design a subband system with QMF filters as 

in Eq. (3.8) that allows only amplitude distortion using linear phase finite impulse 

response (FIR) filters. The design of these filters will be such that the amplitude 

distortion is minimized. Obviously, linear phase systems which allow the presence 

. of nulls in the overall system response should not be used. 

A causal finite impulse response (FIR) filter Ho(z)  is defined as, 

for N < oo. Given that ho(0) # 0 and ho(N - 1) # 0, Ho(z)  has linear phase 

characteristics if 

ho(n)  = h o ( N  - 1 - n) (3.18) 
- - 

For a linear phase FIR filter, the frequency response ~ ~ ( e j ~ )  can be written as, 

- j v w  
HO (ejw ) = Ho (w)  e (3.19) 

where 

Note the distinction in terms of argument between the frequency response H0(ejw ) 

and its absolute value Ho(w). 

The output Y (e jw)  can be written as, 

1 2 jw 2 i ( ~ - 4 ) } x ( ~ i w )  y ( e j W )  = I { ~ o  (e ) - Ho (e 

1 
- - { ~ ~ ~ ( w ) e - j ~ ( ~ - ' )  - H O ~ ( W  - ?r)e -j(w-r)(N-1) x jw - 2  } (e 1 (3.21) 

1 
= Z { ~ 0 2 ( w )  - ~ ~ 2 ( ~  - r i ) e i 4 N - l ) }  e - j w ( N - l ) ~ ( e j ~ )  
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We consider here two cases, even length and odd length filters. For even length 

filters (N even), Eq. (3 .21)  becomes, 

1  
y ( e j w )  = - { H O 2 ( w )  2  + HO2(w - n ) } e - j w ( N - l ) ~ ( e j w )  (3.22) 

A reversible system must have, 

but from the discussion in Section 3.3 this is not exactly possible. 

The error function E, (w)  which is defined as 

gives us a measure of the level of distortion as function of the radial frequency 

w .  Minimization of this function will be a major consideration in the filter de- 

sign, especially when the two subband system is used in a tree-structure analy- 

sis/reconstruction to divide the signal into more than two subbands. 

For odd length filters, Eq.  (3 .21)  becomes, 

1  
y ( e j W )  = 2 { ~ 0 2 ( w )  - HO2(w - n ) } e - i ~ ( N - l ) ~ ( e j w )  (3.25) 

For w  = $ we get, 

1  n  i f  ( N - l ) X ( e j ; )  
y ( e i ; )  = Z { ~ 0 2 ( Z )  - ~ ~ ' ( - ~ ) ] e -  (3.26) 

since H o ( z )  has real coefficients, H o ( f )  = H o ( - f )  which makes ~ ( e j f )  = 0. Odd 

length filters can not be used in configurations like the one in Fig. 3.1 since they allow 

the existence of nulls in the overall system response. A slightly modified system 

though, which will be considered later in this chapter, can utilize odd length linear 

phase filters without the overall system response containing any nulls. 
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3.5 Design of Linear Phase QMF filters 

The fact that linear phase QMF filters allow complete cancellation of the alias- 

ing terms when used in a subband system gives us some flexibility in designing 

these filters. Generally, band-splitting filter banks which do not allow complete 

cancellation of the aliasing terms have to have filters with very narrow transition 

bands, so that the overlapping between the subbands and therefore the aliasing is 

kept small. In order to achieve that, high order filters have to be used which makes 

the implementation of the subband systems complicated. Also, the use of filters 

which do not overlap results in an overall system response with spectral gaps. 

By using linear phase QMF filters, the subband systems become less compli- 

cated. This is due to the fact that the aliasing terms are eliminated and the width 

of the transition bands of the filters is not as important. Therefore, lower order 

filters with wider transition bands can be used and the spectral gaps can be also 

avoided. Referring to Eq. (3.23), in order to avoid the spectral gap, it is required 

that the response of the filter must be very close to -3 dB (l/fi) at w = a/2. 

Although some commonly used filters (equiripple, Hamming, Hanning) can have 

acceptable performance when used in a subband system, the filters that have at- 

tracted special attention, are those designed by Johnston [6]. To design these filters, 

. Johnston established two criteria. 

1. The ripple in the system response described by the error function E,(w) in 

Eq. (3.24). 

- 90 - 



2. The stopband rejection of the individual filter. 

The first criterion refers to the amount of distortion imposed by the system on 

the input signal. In a subband system, the subbands must be isolated from each 

other so that the noise that is generated from coding a particular subband is not 

allowed to spread over to the other subbands. This leads us to the second criterion 

which can be considered as a measure of the leakage between the subbands. 

The filters we are interested in, have an even number of coefficients and are 

symmetric. If the number of filter coefficients is N, these constraints reduce the 

number of variables by 2 yielding N / 2  variables to be searched. In order to obtain 

the optimum values for the filter coefficients, an optimization metric that expresses 

the above criteria as a single function of these coefficients must be first constructed. 

A search algorithm will then determine the optimum values that minimize the 

constructed metric. 

3.5.1 Optimization criteria 

The following formula which is the same formula used by Johnston, can be used 

to combine the two criteria into a single optimization metric E, 



where 

cr is the stopband weighting and f S ~  is the stopband edge. Erp corresponds to the 

ripple "energy" and E, is the stopband energy for the filter Ho(z). Since the filter 

Elo(%) has an even number of coefficients, Ho(w) can be expressed in terms of the 

filter coefficients ho(n) as 
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3.5.2 Search Algorithm 

The Hooke and Jeaves Algorithm [17] is a relatively unsophisticated search 

algorithm that attempts to minimize a single objective function of several variables. 

It was used by Johnston in the optimization system shown in Fig. 3.3 for the filter 

design. 

Due to the use of a simple search method such as that of Hooke and Jeaves, the 

starting position as well as the step size are important in some cases. It is possible 

that the search will get trapped in local minima or fail to  converge at  all, if the step 

size is inappropriate. 

Since the Hooke and Jeaves method does not guarantee termination in a global 

minimum, the suggested procedure is to consider a starting position well away from 

the desired solution The search should be repeated with different carefully selected 

starting positions and step sizes to assure a successful optimization. 

3.5.3 New Design Technique for QMF filters 

A new design technique for QMF filters was introducedby Jain and Crochiere 

[7]. This design which uses the same optimization criteria as Johnston's, converges 

to the optimum solution without any manual intervention or repeated trials with 

- different starting points. A description of the design algorithm as well as the per- 

formance charts that allow the designer to select the appropriate weighting function 

a and the filter length N so that the filters will have the desired frequency charac- 

teristics, are presented in the same study. 
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3.6 Implementation of a Two band QMF Subband System 

The use of linear phase. QMF filters in subband systems, apart from the alias-free 

reconstruction, offers some computational advantages as well. Referring to Fig. 3.1, 

the signals xo(n) and xl (n)  represent respectively the low and high half-bands of 

input signal x(n)  with z-transforms X O ( t )  and X l ( z )  equal to 

Since Hl ( z )  = Ho(-z ) ,  the values of xo(n) and xl ( n )  can be expressed in terms of 

ho(n) and x(n) as 

If the values of xo(n) and x l (n )  are computed separately, 2N multiplications and 

2(N - 1 )  additions will be required for every sub-sampled sample. The load though, 

can be considerably reduced, if we take advantage of the similarity between the 

computations required for both signals. Consider the functions xe(n) and xd(n)  

defined as 

N/2-1  

ze ( n )  = C ho(2k) x (n  - 2k) (3.31 .a) 
k=O 

N / 2 - 1  
xd(n)  = h o ( 2 k + l ) x ( n - 2 k -  1 )  (3.31.b) 

k=O 

The values of xo(n) and x l (n )  can be determined in terms of xe(n) and xd(n)  as 



Fig. 3.4 Efficient implementation of the analysis of a two band 
subband system with linear phase QMF filters. 

To compute the values of xe(n) and xd(n) ,  we need N / 2  multiplications and 

N / 2 - 1  additions for each. This implies that the computation load can be reduced to 

N multiplications and N additions for every two input samples, if the computation 

of x,(n) and xd(n) is used as an intermediate step. The implementation of the 

analysis of the subband system is illustrated in Fig. 3.4. 

The reconstruction of the signal can be also done in a computationally efficient 

way. Referring again to Fig. 3.1, the signals zb(n) and x i  ( n )  are obtained after null 

samples are inserted between the samples of 'the decoded signal. The z-transform 

of the output signal Y (2) is given in terms of the z-transforms clf the above signals 
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Y ( z )  = ~o(r)~L(z) + ~l(z)x:(z) 
(3.33) 

= H~(Z)X~(Z) - HO(-z)x~(z) 
We consider the inverse z-transform of the above equation to obtain the relationship 

between the coefficients y (n), zb(n) and z\(n), 

By introducing the functions zb(n) and z:(n) to be the sum and the difference of 

the signals xb (n) and s\ (n) respectively, 

x: (n) = xb (n) - xi (n) 

x&(n) = xb(n) + xi (n) 

the output signal y(n) can be 'expressed as, 

Both x:(n) and xh(n) are zero for odd values of n, being the sum and the difference 

of zero-valued samples and the above equation can be written as 

ho(2k+ l)xb(n-2k- 1) for nodd I k=O 
The implementation of the reconstruction part of the system becomes more 

efficient if the computation of z: (n) and xh(n) is used as an intermediate step. To 

compute zk(n) and z:(n), two additions are required for every nonzero sample. 



y(n) 

n odd 

Fig. 3.5 Efficient implementation of the reconstruction of a 
two band subband system with linear phase QMF 
filters 

To compute the output signal y(n) by means of Eq. (3.37), N / 2  multiplications 

and N / 2  - 1 additions are required for every sample. Therefore, the number of 

calculations can be reduced to N / 2  additions and N/2  multiplications per output 

sample. This can be implemented as shown in Fig. 3.5. 

3.7 Tree-Structured Subband Systems 

In the previously described implementation, the input signal x(n)  was decom- 

posed into two subbands in which sampling rate was reduced to 112 of its original 

value. This decomposition can be extended to more than two subbands by applying 

the same decomposition process to each of these two subbands as to the input signal 

x(n). The resulting system, as illustrated in Fig. 3.6, has four subbands each with 

a sampling rate reduced to 114 of the sampling rate of the input signal. Obviously, 
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ANALYSIS RECONSTRUCTION 

Fig. 3.6 Tree-structured four subband system 

this decomposition can be extended to 8 and in general 2 p  subbands by repeating 

the same decomposition process p times. At each of the p stages of the decompo- 

sition process, the number of two band systems required, is equal to 2 p - I  and the 

total number of two band systems is equal to 2 p  - 1. 

The process of reconstructing the input signal can be considered as the "mirror 

imagen of the decomposition process. For the four subband system in Fig. 3.6, the 

reconstruction is done in two stages. First, the two lowpass and the two highpass 

signals are combined together to form only two signals which are finally used to 

reconstruct the input signal. 

The choice of the analysis and reconstruction filters is limited by the alias-free 

requirement. Although, the frequency characteristics of the filters might differ from 

stage to stage they must be the same within a particular stage. For example, the 

lowpass half-band filters Ho(z) and HA(z) used respectively for the first and second 

stage of the system in Fig. 3.6, might be different, but both lowpass filters of the 
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second stage must be the same. Also, both groups *o(z), Hl(z), Go(z), Gi(z) and 

HA (z) , Hi (z), Gb (z) , G; (z) must satisfy the alias-free reconstruction conditions set 

by Eq. (3.8). Under these conditions, the overall system response R(z) is given by 

the equation 

where 

R ~ ( z )  = *02(z) - H O ~ ( - Z )  (3.38.b) 

and 

The results can be extended to cover systems with p stages (2P subbands) with 

an overall response R(z) given by 

where : ~ k ( z )  is the overall response of the two band system used for the kth stage. 

Exact reconstruction cannot be achieved, if linear phase QMF filters are used. 

To show this, all we have to show is that the overall system response R(z) cannot be 

equal to a pure delay. Obviously, if R(z) = z-li, its zero-pole diagram will have k 

poles and no zeros. Referring to Eq. (3.39), R(z) is the product of the z-transforms 

Rk (z) for k = 1,2, . . . , p. Except for trivial cases, any z-transform Rk(z) , being the 

overall response of a linear phase QMF two band system, does have zeros somewhere 

on the z-plane which implies that R(z) cannot be a zero-free transform. Therefore, 

R(z) # z-) and exact reconstruction cannot be achieved. On the other hand, 



although it is possible for the amplitude distortion to accumulate, it will always 

be between a maximum and a minimum bound set respectively by the sum of all 

the maximum and all the minimum values of distortion (in dB) that occur at the 

individual stages. 

ANALYSIS l-lu RECONSTRUCT l ON 
CODER/DECODER 

Fig. 3.7 Tree-structured three band system 

It is sometimes desirable to have subbands with unequal bandwidths. In these 

cases the tree decomposition is done partly on some branches so as to produce 

subbands with bandwidths multiples of the basic bandwidth. For example, a three 

band system can be implemented with a two stage tree-structure as illustrated in 

Fig. 3.7. Note that one of the subbands has twice the bandwidth of the other two. 

In this case, alias-free reconstruction can be achieved only if a filter C ( z )  equal to 

is used to compensate for the distortion imposed on the lowpass half-band due to 

the extra splitting. 
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3.8 Parallel QMF Filter Banks 

In the previous section, we have discussed the decomposition of a signal into a 

number of subbands by means of a tree-structure scheme which allows an alias-free 

reconstruction. The tree-structure scheme can be easily replaced by another one 

that utilizes parallel filter banks for both the analysis and the reconstruction. This 

new scheme which is illustrated in Fig. 3.8 was used by Esteban and Galand [18] 

and by Galand and Nussbaumer[ll] as a simple way to practically implement a 

subband coding system. 

The bandpass filters of the filter banks, when derived from the equivalent QMF 

tree-structures retain their alias-free reconstruction property and for this reason 

the filter banks are called parallel QMF filter banks. Obviously, the number of 

equal-width subbands that can be allowed is restricted to powers of 2. 

To establish a relationship between the bandpass filters of the QMF filter banks 

and the half-band filters of the equivalent tree-structures, we introduce a slightly 

different notation than the one previously used. We define Fk(z) and Fi(z)  the 

kth filters of t'he analysis and the reconstruction filter banks respectively.. Hi(z), 

Hi(-z) are the low and highpass filters used for the i'th stage of the analysis part 

of the tree-structure and H;(z) and - Hi(-z) are the filters for the i'th stage of the 

reconstruction part of the tree-structure. The total number of subbands N is equal 

t 0 

where p is the number of stages of the equivalent tree-structure. 
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Fig. 3.8 Multiband subband system 

It can be shown that the two sub-samplingllinear-filtering operations shown in 

Fig. 3.9.a are equivalent. This equivalence can be used to transform the analysis 

part of the tree-structure scheme into its parallel form. Similarly, the equivalence 

between the two sub-sampling/linear-filtering operations shown in Fig. 3.9.b can 

be used to transform the reconstruction part of the tree-structure scheme into its 

pmallel form. Using these equivalent operations, the following relationships between 
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a) For the analysis part 

b) For the reconstruction part 

Fig. 3.9 Equivalent sub-sampling/linear-filtering operations for 
the tree-structure/parallel-structure t'ransformation 

Fk(z), F ~ ( z ) ,  k = 0,1,. . . , N - 1 and H;(z), i = 1.2,. . . , p  are derived. 

where N is a gain normalization factor and s; and ck indicate the signs which can 

be determined by the following procedure. For s;, we.express the value of k of the 

filter Fk(z) in its binary form considering only p digits. Counting from left to right, 

we find the i'th bit b; and determine the value of s; according to the formula, 

(+1 for bi = 0 
S; = 

-1 for b; = 1 

For example, to find the expression for F5 (z) when the number of stages p = 3, we 

express 5 in binary using only 3 bits and obtain the values of b;. Since 5 = (101)~ 

(bl  = 1 , b 2  =0,b3 = I), then s l  = -1, s2 = +1 and s3 = -1 and 



To find ck, we consider the value of dk such as 

and c k  is given by the formula 

(+1 for dk = 0 

For the same example, d5 = 0 therefore, cs = +1 and F: (2) = NF5 ( z ) .  

The process of generating the filters Fk(z) from the half-band filters of an equiv- 

alent tree-structure, guarantees that 

This can be proved by considering the numbers k and N - 1 - k in their binary form. 

Since N = 2P, k and N - 1 - k are 1's complement of each other, meaning that 

everywhere k has a 0 which corresponds to a positive sign, N - 1 - k has a 1 which 

corresponds to a negative sign. For the previous example, the 1's complement of 

5 = (101)2 is.2 = (010)~ and 

which makes F2(2) = F5(-2). 

By considering the inverse z-transform of Eq. (3.46), we obtain the following 

relationship 

f~-1-k(n)  = (-lInfk(n) (3.47) 

that can be used for a more efficient implementation of the parallel QMF filter 

banks. 
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Referring to Section 3.6, the analysis of a two band system is done with N 

multiplications and N additions for every two- input samples. If the sampling rate 

used is equal to f a ,  a real time implementation will require faN/2 multiplications 

and j, N / 2  additions per second. For the i'th stage of the tree-structure implemen- 

tation, the sampling rate of the input signal is j8/2i-1.  If the order of the filter 

Hi(z)  is Mi, the number of computations required is equal to M;/2 multiplications 

and M;/2 additions for every two band system. This makes the overall computation 

rate of the particular stage equal to jaM;/2 multiplications and j,Ml/2 additions 

per second. Therefore, the overall computation rate for the analysis is equal to 

f a  ( M I  + M 2 . .  . + M p ) / 2  multiplications and additions per second. 

For the equivalent parallel QMF structure, the order L of the bandpass filters, 

is given by the equation 

where M; is the order of H;(z). The overall computation rate can be reduced to 

jaL/2 multiplications and additions per second if the relationship among the filter 

coefficients described by Eq. (3.47), is properly used. Clearly, the value of L is much 

greater than the sum of the values Mi which implies that the computation load will 

increase considerably with the parallel filter banks. 

Generally speaking, the tree-structure scheme offers the most computationally 

efficient way of implementing a subband system. Its main disadvantages though, 

are that the different stages of the tree-structure must operate at different sampling 

rates and delay lines must be established and updated for the original input signal as 
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well as for all the other input signals to the intermediate stages. The housekeeping 

operations are simplified when parallel QMF filter banks are used. Although longer, 

there is only one delay line of the original signal to be updated and only one sampling 

rate. 

The parallel implementation of the subband system can be simplified by truncat- 

ing the impulse response of the bandpass filters. Truncation of the impulse response 

can be costly in terms of aliasing since the alias-free reconstruction condition will 

not in general be satisfied after truncation. In addition, the overall frequency char- 

acteristics of the system and frequency characteristics of the bandpass filters may 

be degraded. For a specific application, once the acceptable bounds for the above 

three factors are established, the filters' impulse responses can be appropriately 

truncated and reoptimized. Clearly, the truncation will reduce the overall group 

delay imposed by the system as well as the memory and the overall number of com- 

putations. More detailed discussions on specific applications of truncated parallel 

QMF filter banks can be found in [18],[11]. 

3.9 Odd Length Linear Phase QMF Filters 

The discussion in Section 3.4 has shown that odd length filters cannot be used 

in configurations like the one in Fig. 3.1, since they introduce nulls into the overall 

system response. If we examine Eq. (3.25) and Eq. (3.26), we observe that the 

null exists because of the phase characteristics rather than the frequency charac- 

teristics of the filters. Therefore, we might be able to remove the null by inserting 



equalizers that change the phase characteristics without changing the frequency 

characteristics. The simplest equalizer is a pure delay. 

Consider again the lowpass half-band filter Ho(z) and the other three filters of 

the subband system which are defined in terms of Ho (z) as, 

where k is an integer. The conditions for an alias-free reconstruction which are 

given by Eq. (3.2.a), are satisfied and the overall response becomes, 

Using linear phase filters with N coefficients the overall frequency response Y ( e j w )  

becomes, 

We evaluate Y (ejw ) at w = 7r/2, 

7r 7r 
Since H O ( ~ )  = H O ( - ~ ) ,  we find that if both k and N are even or both k and N 

are odd, the overall response is null-free. 

For a null-free response and odd length filters the overall delay is minimum if 

k = 1. Under these conditions, Eq. (3.49) becomes, 



and the overall response 

1 
Y(z) = Z { ~ 0 2 ( z )  + ~ ~ ~ ( - r ) } z - ~ ~ ( z )  

'S ANALYSIS CODER/DECODER RECONSTRUCT ION 

Fig. 3.18 Subband system for odd length linear phase filters 

The subband system with filters described by Eq. (3.53) is shown in Fig. 3.10, 

where the unit delay z-' is shown as a separate operation. 

One family of odd length half-band filters that has some interesting properties 

can be derived by windowing the response of the ideal half-band filter. 

N - 1 
ho (n) = h (n - -----I (3.55.~) 2 

where 

s i n ( ~ n l 2 )  N - 1 N - 1  
h(n) = p 4 2  for n = -- 2 ' * * ' 7  2 (3.55.b) 

w(n) is a window function and /3 is the gain normalization factor. 

These filters discussed in (191, have h(n) = 0 for n even, with n # 0. This means 

that almost half of the filter coefficients are zero and therefore the compltxity of 
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a) Analysis 

b) Reconstruction 

Fig. 3.11 Implementation of the analysis/reconstruction of a 
two band system with odd length filters 



the system can be reduced. Figure 3.11 shows an efficient way to implement the 

analysis and the reconstruction of a two band system with odd length window 

designed filters. In order to implement an N-tap filter, (N + 3)/4 multiplications 

and (N  - 1)/4 additions are required for every second input, which implies that the 

load is almost half of the load using even length QMF filters. A major drawback 

though, is that these filters, independently of the shape of the window w(n) ,  have 

a gain of -6 dB (1/2) at w = n/2 which also makes the overall gain equal to -6 

dB at that frequency. Equalization procedures can be used to modify the overall 

system response, provided that the system remains less complex than systems with 

even length filters. 



Chapter 4 Recursive and Pseudo-QMF Filters 

* 

4.1 Introduction 

Two major topics related to the design of the analysis and the reconstruction 

filters of subband coding systems, are to be discussed in this chapter. The first 

one is based on the work presented by Barnwell [12] and deals with a new family 

of QMF filters with infinite impulse response (IIR). Unlike the linear phase FIR 

filters discussed in the previous chapter, the IIR filters can be designed to introduce 

only phase distortion to the reconstructed signal. For certain applications, where 

the conservation of the frequency characteristics of the signal is much more impor- 

tant than the conservation of linear phase, the use of IIR filter might be a better 

alternative. 

The second topic of this chapter deals with a new approach to the analy- 

sis/reconstruction problem presented by Rothweiler [S] and Nussbaumer [9],[10]. 

The conventional parallel QMF filter bank is replaced by the so called pseudo-QMF 

filter bank. Unlike the parallel QMF filter bank which has its filters determined 



from the half-band filters of the equivalent tree-structure, the pseudo-QMF bank 

has its bandpass filters derived by frequency translating a single prototype lowpass 

filter. The "pseudon name comes from the fact that the new type of filter banks 

can remove the aliasing due to adjacent bands only. 

4.2 IIR-QMF Filters 

The idea of designing IIR filters that could be used in a subband system without 

causing any amplitude distortion or aliasing, was based on the following facts. 

1. IIR filters can be considered as the cascade of two filters. One is an all-zero 

filter which can have linear phase characteristics and the other is an all-pole 

filter with its poles inside the unit circle for stability. 

2. Linear phase filters can provide good isolation between the subbands but 

cause amplitude distortion when used in a subband system. 

3. All-pole filters can be used to equalize any response that does not have zeros 

on the unit circle. 

According to the above, the design of the IIR-QMF filters can be considered 

as the design of an all-pole equalizer which will remove the amplitude distortion 

caused by the linear phase QMF filters. Our discussion on IIR-QMF filters is based 

on results obtained in the previous chapter as part of the discussion on linear phase 

QMF filters. 



First consider the two band system shown in Fig. 3.1 which utilizes even-length 

linear phase FIR filters. The conditions for an alias-free reconstruction given by 

Eq. (3 .8)  are: 

H 1 ( 4  = H o ( - z )  

GI  ( z )  = -Ho(-2)  (4 . l . c )  

where H o ( z )  is the lowpass half-band filter. Under the above conditions, the recon- 

structed signal Y ( z )  is given by the formula 

1 
Y ( z )  = { H O ~  ( z )  - Ho2 (- 2 ) )  ~ ( z )  (4.2) 

We define the z-transform F ( z )  to be the cascade of the two lowpass filters 

F ( 4  = H o ( z P o ( 4  
(4.3) 

= H~~ ( 2 )  

and the z-transform R ( z )  to be the overall response of the system (multiplied by 2) 

such as 
Y k )  R ( z )  = 2- 
X ( 4  (4.4)  

= H ~ ~ ( z )  - xO2(-Z) 
Since H o ( z )  has linear phase characteristics R ( z )  and F ( z )  also have linear phase 

characteristics. 

The system response R ( z )  can be expressed in terms of F ( z )  as 

We also obtain the coefficients of R ( z ) ,  by considering the inverse z-transform of 

Eq. (4.5) 



where f (n) = ho(n) * ho(n). From the above equation, it is clear that 

for n even 
r(n) = 

2 f (n) for n odd 

Our intention is to find an expression for R(z) in terms of its zeros. For this reason, 

we introduce the z-transform P(z) whose coefficients p(n) are defined as 

The system response R(z) can be written in terms of P(z) as 

If the lowpass filter Ho(z) has N (even) coefficients, then F(z) will have 2N - 1 

(odd) coefficients and P(z)  will have N - 1 (odd) coefficients. P(z)  is expected 

to have an odd-length impulse response because if it was an even-length one, at 

least one of its zeros would have been on the unit circle (z = -1) and the system 

response R(z) would have had a spectral null at w = 7r/2. 

We like to express the response P(z) in terms of its zeros. P(z) ,  being an odd- 

* length linear phase response, has its complex zeros zm in groups of four (z,, z,, 

l/z,, l/z&) where z& is the complex conjugate of zm and its real zeros z, in groups 

of two (z,, l/z,). In order to include both types of zero-patterns in our expression, 

we make the assumption that P(z)  has a single pair of real zeros, therefore, 

where M represents the total number of groups with complex zeros and G, = p(0). 

Figure 4.1 shows the zero diagram of a typical response P(z) .  
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REAL 

Fig. 4.1 A typical zero-diagram for the response Plz)  

Referring to Eq. (4.9), the relationship between R(z) and P(z) makes the corn- 

* plex zeros of R(z) to appear in groups of eight (z,, -zm, z,, -z&, l/z,, -l/z,, 

l /z&, -l/z&) and its real zeros in groups of four (z,, -zr, l/z,, - 112,). R(z) Can 

be expressed in terms of its zeros as 

with a typical zero diagram shown in Fig. 4.2: 

An all-zero response cannot have flat frequency characteristics. Clearly, if we 

like to have a, response with such characteristics, an all-pole stable equalizer Q(z) 
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REAL 

Fig. 4.2 Zero-diagram for a typical system response R(z) 

must be introduced which will satisfy the following equation. 

In order to design the equalizer Q(z), we consider the system response R(z) as 

the cascade of two responses, one with minimum phase characteristics B(z) and one 

maximum phase characteristics B1(z) such as 

With no loss of generality, we assume that the zeros z, and z,, m = I,. . . , M of 

R(z) occur inside the unit circle. The minimum phase response B(z) has its zeros 
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inside the unit circle and can be expressed as 

The maximum phase response has its zeros outside the unit circle and can be ex- 

pressed as 

The two responses B ( z )  and B 1 ( z )  are related to each other through the equation 

where 

The equalizer Q ( z )  can be considered as the cascade of the responses A ( z )  and 

~ ' ( z )  which equalize B ( z )  and B1(z )  respectively, i.e. 

and 

Consider first the minimum phase response B(z ) .  Since all its zeros occur inside 

the ;nit circle, we can define the response A ( z )  to be its inverse 



Clearly, A(%) is stable since it has its poles inside the unit circle. Also, Eq. (4.18) 

is satisfied. 

For the maximum phase response B1(z), since its zeros occur outside the unit 

circle, its inverse is unstable and it cannot be used as an equalizing response. To 

obtain the response A1(z), we introduce the one-pole one-zero allpass filter E k ( Z )  

which is defined as 

Ek(z) is stable only when its pole is inside the unit circle < 1) which according 

to the above definition implies that its zero must be outside the unit circle. The cas- 

cade of any number of these one-pole one-zero allpass filters that satisfy Eq. (4.21) 

have flat frequency characteristics, i.e. 

An interesting interpretation that can be given to the above results, is that every 

zero l /zk  that occurs outside the unit circle can be equalized by a pole zk inside 

the unit circle. Therefore, the equalizing response ~ ' ( z )  must have the form 

Referring to Eq. (4.14), the denominator of the above expression is the definition 

of the minimum phase response B(z).  The response ~ ' ( z )  can be written as 



If we ignore the gain normalization factors, we can observe that the equalizing 

responses A(z) and A1(z) are identical. 

The equalizer Q(z), being the cascade of A(z) and ~ ' ( z )  can be expressed in 

terms of B ( z )  as 

and can be considered as a single linear filtering'operation or as two or more lin- 

ear filtering operations in cascade. Since the system is designed to remove all the 

aliasing terms, Q(z) can be implemented at any point prior to the sub-sampling 

operation or after the interpolation operation. In general, we like the computation 

load of the system to be evenly distributed among the transmitter and the receiver. 

If Q(z) is considered as a single filtering operation, it will have to be implemented 

either at the transmitter prior to sub-sampling or at the receiver after the inter- 

polation, causing an uneven distribution of the computation load. Equation (4.17) 

can give us a better alternative. Ignoring the gain factors, Q(z) can be considered 

as the cascade of two all-pole filters A(z) and ~ ' ( z )  one which can be implemented 

at the transmitter and one at the receiver. Since these two filters are identical, the 

computation load is evenly distributed. 

ANALYS l S RECONSTRUCT ION 
CODER/DECODER 

Fig. 4.3 Two band subband system with equalizers 



, 

A system which uses equalizers to obtain a flat frequency response is shown in 

Fig. 4.3. The equalization is done partly by the the filter A(z) at the transmitter 

and partly by the filter ~ ' ( z )  at the receiver. One concern though, is how the 

equalizing filter at the transmitter affects the stopband characteristics of the analysis 

filters which determine the performance of the system in terms of isolating the two 

- subbands. By evaluating Eq. (4.12) and Eq. (4.17) on the unit circle, the response 

of the filter A(ejW) can be expressed in terms of the overall system response ~ ( e j ~ )  

where Gc is a gain factor. Since ~ ( e j ~ )  is a non frequency selective function, the fil- 

ter response ~ ( e j ~ )  is also non frequency selective, oscillating about the unity-gain 

line. Obviously, ~ ( e j ~ )  being a non-perfectly flat response will alter the character- 

istics of the filters but by no more than the size of its ripples. For a typical linear 

phase QMF system, the size of the ripple of the overall response is not more than 3 

dB and usually much less. This makes the size of the ripple of A(ejw) approximately 

1.5 dB. A typical value for the stopband rejection is 40 dB which implies that by 

having the equalizing filter at the transmitter, the performance of the system in 

isolating the subbands although it might improve, will undergo small changes. 

The IIR-QMF filters H A  (2) , H i  (2) , Gb (2) , G\ (2) that can be used in the conven- 

tional two band system shown in Fig. 3.1 are obtained using the following equations 



Clearly, this system is equivalent to the one shown in Fig. 4.3 and its system response 

is expected to be flat. 

The design procedure for IIR-QMF filters can be summarized into the following 

steps. 

1.  Obtain the linear phase filters Ho(z) ,  H l ( z ) ,  Go(z) ,  G l ( z )  that satisfy the 

QMF conditions (Eq. ( 4 . 1 )  ) and have the appropriate frequency character- 

istics. 

2. Find the transfer function R ( z )  as described by Eq. (4.4). 

3. Split R ( z )  into a minimum and maximum phase response B ( z )  and B1(z )  

(Eq .  (4.14) and Eq.  (4.15) ) and obtain the all-pole filter A(z)  = l / B ( z ) .  

4. Obtain the IIR-QMF filters H ; ( z ) ,  H i ( z ) ,  G ~ ( z )  and G\(z) as described by 

E q .  (4.27). 

Referring to Eq. (4.14), the response B ( z )  can be written in terms of its zeros 

in a slightly different form 

This implies that the equalizing filter A(z) ,  being the inverse of B ( z )  as well as the 
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IIR-QMF filter HA(z) can be expressed as 

where the values of am are derived from the zeros z, and z, and ho(n) are the 

coefficients of the linear phase filter HO(z). HA(z), like any other IIR filter when 

implemented, requires two delay lines, one for the input samples and one for the 

output samples. According to the above expression, only every second of the delayed 

output samples is required to determine the value of the new output. Since the 

linear filtering operation is followed by a sub-sampling operation which removes all 
-- 

the odd output samples, the above expression indicates that only the even output 

samples need to be obtained and stored. Clearly, this property of the filters can be 

used for a computationally efficient implementation of the system. 

It appears though, that the implementation complexity of the system is reduced, 
- 

if the equalization operation is done separately, as shown in Fig. 4.3. Since the 

denominators of both the highpass and the lowpass filters H:(z) and Hb(z) which 

correspond to the equalizing function A(z) are the same, they can be implemented 

once for both filters. This reduces the complexity of the system. 

The discussion on equalization can be extended to cover systems which use 

odd-length linear phase filters such as the one shown in Fig. 3.10. The procedure 

for designing equalizers for odd-length filters is the same with the one previ~~lsly 
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described for even-length ones. The only difference is the expression of the overall 

system response R ( z )  which is given by the equation 

where Ho(z)  represents an odd-length lowpass half-hand filter with linear-phase. 

A special case of odd-length filters with some interesting properties are the ones 

which are derived by windowing the ideal lowpass half-band filter. A discussion 

in Section 3.9 has shown that these filters can be implemented in a very efficient 

way due to the fact that almost half of their coefficients are zeros. Their major 

disadvantage which is the existence of a -6 dB ripple in the overall response of the 

system can be eliminated in a very efficient way by using the all-pole equalizers. 

According to the study in [I21 which tested different subband coding systems 

with APCM and ADPCM coders on speech signals, the simulation results show that 

in general no dramatical changes in the system's performance are observed with 

either FIR or IIR filters. The introduction of IIR filters improves the frequency 

characteristics but inserts phase distortion to the signal which sometimes affects 

its quality. A simple rule that can be used to achieve some improvement in the 

system's performance, is to use IIR filters for the outer stages of tree-structures 

only. This way they insert only a small phase distortion to the signal with a slight 

improvement of the system's performance. 

4.3 Pseudo-QMF Filter Banks 

Consider the subband system shown in Fig. 4.4, where the analysis and the 
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reconstruction of the input signal x(n) is done by two filter banks. This structure 

is similar to the one shown in Fig. 3.8 for parallel QMF filter banks. As it was 

mentioned earlier, the difference between the two structures is the way the bandpass 

filters are obtained. For the new filter banks, which are referred to as "pseudo-QMF 

banks", all of the bandpass filters are derived by frequency translating a single 

prototype lowpass filter. 

ANALYSIS RECONSTRUCTION - -  
- 1:N -G0(z)  - 

D -  1:N - G ~ ( z )  - 
C E 

I 
I 
I I 
I I 
I 
I 

ANALYSIS DOWN UP RECONSTRUCTION 
SAMPLING BANK SAMPLING FILTER 

BANK 

Fig. 4.4 Subband system with parallel filter banks 

An idealized L-tap prototype filter H ( z )  has its frequency response shown in 

Fig. 4.5. Its cutoff frequency w, is given by the formula 

where N is the number of equal-width subbands in the system. The bandpass 

filters of the analysis and the reconstruction are obtained by frequency translating 

H ( z )  using respectively the functions cos(w;n + 4;) and cos(1 I;n + 8;) to weight the 
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Fig. 4.5 Frequency responses for the prototype and the 
bandpass filters of a typical pseudo-QMF filter bank 

coefficients h(n) where w; is the translation frequency for the i'th filter given by 

and 6; and 0; are phase angles used respectively for the i'th analysis filter Hi(=) 

and the i'th reconstruction filter G;(z) so as to remove the aliasing terms. Thus, 

for i = O , l ,  ..., N-1.  

Taking the z-transforms of the above equations, 

Since these filters belong to the more general category of fractional-band filters, we 
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obtain the z-transform of the output signal Y ( z )  by using Eq.  (2 .26) .  

For alias-free reconstruction, all the terms for which 1 # 0  must cancel. This 

condition is insured by eliminating the aliasing due to adjacent filters and designing 

the prototype lowpass filter H ( z )  in such a way so that nonadjacent bandpass filters 

do not have overlapping responses. 

7r 
H ( e j a ) = O  l a l > ~  given l a1<2N 

Thus, 

The corresponding values of a and ,f3 for the four different sets of terms in 

Eq. (4.36) as well as the conditions for t h ~  terms that do not cancel are given in 
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No cancellation 

condition 

7r 
Note: w; = -(2i + 1) 2N 

Table 4.1 Conditions on 1 and i for the terms in Eq. (4.36) that 
do not cancel 

Table 4.1. The output signal Y (z) can be then expressed as 



+ e - i ( Q ~ - e ~ )  ( r e j ~ ~ )  ( z e - j ~ ~  > X ( z >  

+ e - i ( d ~ - l - e ~ - l )  ( z e j ~ ~ - l )  H ( z e - j ~ ~ - l ) X ( Z )  

+ e j ( h - e O ) ~ ( z e - j w O )  ( e j ~ ~ ) X ( z )  

+ e j ( Q ~ - ~ - e ~ - ~ )  H ( Z e - j ~ ~ - l ) H ( z e j ~ ~ - l ) X ( Z ) }  

In order to remove the aliasing and have flat overall response, the following equations 

. must be satisfied 

One possible solution to the above set of equations that was suggested by Nuss- 
-- 

baumer [lo], can be obtained by allowing 

This yields the following reconstructed signal 

Thus, the overall system response R(z) is given by 



To examine the frequency characteristics we evaluate R(z) on the unit circle 

where H ( w )  = I H (ejw) 1. The length of the filter L must be chosen so as to avoid 

any spectral nulls due to the phase characteristics of ~ ( c j ~ ) .  For w = 0 (z = I), 

only the i = 0 terms of the above equation contribute to the gain which becomes 

Clearly, L must be an odd number so as to avoid a spectral null at  w = 0. 

A flat frequency response can be established if the following condition is satisfied 

This implies that the frequency characteristics of the prototype filter must satisfy 

the equation 
7r 

( 1  for lw( < - 2N 

7r 

2 for IwI = - 2N 

( 0  elsewhere 
in the region Iwl  5 7r. Clearly, the above conditions can not be exactly satisfied by 

a causal FIR filter. As a result, the reconstructed signal will suffer from amplitude 

distortion as well as aliasing due to non adjacent subbands. For this reason, the 

design of the prototype filter H(z)  should be based on minimizing the level of 

distortion due to the above two sources. A filter design method similar to the one 

used by Johnstoa to design half-band QMF filters [6] could be used, with the only 
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difference being that the stopband rejection in the region TIN < Iwl < ~r should be 

more weighted than the stopband rejection in the region n/2N < Iwl < TIN so as 

to minimize the terms that cause aliasing. 

It is possible to implement a pseudo-QMF filter bank with a polyphase network 

and an FFT by using only one half of the computations required for the previously 

discussed parallel QMF filter bank. The method that is described in [10],[9] takes 

advantage of the fact that all the filters are derived from a single prototype one. 

According to the first study, the results from simulation experiments that were 

conducted, show that with the pseudeQMF banks, the original signal is nearly 

perfectly reconstructed at the receiver with maximum amplitude distortion equal 

to 0.2 dB. Also, the rejection of the main aliasing term is in excess of 40 dB when 

the prototype filter has 65 taps. 



Chapter 5 Exact Reconstruction Filter Banks 

5.1 Introduction 

The work presented in this chapter is based on a recent paper by Smith and 

Barnwell [14], in which the basic steps to design a reversible subband system were 

shown. Smith and Barnwell developed the conditions for reversibility, using non- 

causal filters for the analysis and the reconstruction of the input signal. Causality 

is required though, if the system is to be actually designed and tested. Taking the 

basic idea from this paper but using causal filters, we develop new conditions for 

a reversible causal system which in turn are used to actually design systems. To 

satisfy these conditions, a new family of quadrature mirror filters is introduced with 

finite impulse response but nonlinear phase. One of its important characteristics, 

is that the impulse responses of the reconstruction filters are the time-reversals of 

the impulse responses of the analysis filters. For this reason these filters are called 

time-reversed QMF filters. 

In Chapter 3, we have discussed the conditions on the analysis/reconstruction 



filters under which the aliasing introduced by a two band subband system can be 

removed. According to these conditions which are given by Eq. (3.3), two of the 

four analysis/reconstruction filters should be defined in terms of the other two. 

Given that the alias-free conditions are satisfied, the overall system response which 

is given by Eq. (3.4) has linear phase characteristics, if the nonaliasing terms of 

each individual channel have also linear phase characteristics. 

Linear phase QMF filters satisfy the conditions for an alias-free linear phase 

system response since all four filters are defined in terms of a single linear phase 

prototype one. This constraint though, introduces amplitude distortion to the sys- 

tem response. The fact that each of the four filters is a linear phase filter, is a 

sufficient but not a necessary condition for the system to have linear phase re- 

sponse. This implies that it is possible to remove the additional constraint of linear 

phase filters and still have a system response with linear phase and possibly without 

any amplitude distortion. 

The cascade of two time-reversed filters with arbitrary phase characteristics has 

always linear phase characteristics. By using time-reversed filters in a subband 

system, the nonaliasing terms of each individual channel have linear phase which 

is a necessary and sufficient condition for the system response to also have linear 

phase. However, since the linear phase constraint on the individual filters is not 

required, other constraints can be imposed on the filters which will remove the 

amplitude distortion from the system response as well. 



5.2 Time-Reversed Filters 

Consider the equal length finite impulse response filters H0(z)  and Go(z)  defined 

By definition, the two filters are time-reversals of each other if 

gO(n) = ho(N  - 1 - n) for n = 0, ..., N - 1 

giving 

N-1 
= z-(IV-l) 1 h o ( ~  - 1 - n ) z  N-1-n 

n=O 

By making the substitution u = N - 1 - n we get 

= E-(N- l )  H O ( ~ - l )  

We are interested on the frequency and phase characteristics of the two filters. 

The frequency response of the filter Ho(z)  is given b y  

~ o ( e j " )  = HR(w)  + jHl(w)  

= Ho(w)e i 4 b )  
where, 

HR (w)  = ~ e { H O ( e j ~ ) }  

Ho(w) = I Ho (ejW) I = JH; (w)  + H: (w) 



Note again the distinction in terms of argument between the filter response H0 (ejw ) 

and its absolute value Ho (w)  . 

Using Eq. (5.4), we can express the frequency response of G o ( z )  in terms of 

Ho(w) and 4 ( w ) .  We assume that Ho(z )  has real coefficients. This makes Ho(w) 

an even function and )(w) an odd function. For z = ejw, 

- , - j w ( N - l ) ~ ~ ( ~ - j w )  Go (ejw ) - 

= Ho(-w)e j{-w(N-l)+4(-w)} (5.7) 

= Ho(w)e - j{w(N-1)+4(~)}  

Equation (5.7) shows that both H o ( z )  and G o ( z )  have the same amplitude charac- 

teristics and the phase characteristics are mirror image to each other with respect to 

the line w ( N  - 1 ) / 2 .  The important fact about time-reversed filters is that, although 

the individual filters might not have linear phase characteristics, their cascade form 

has linear phase, i.e. 

5.3 Time-Reversed Filters in Subband Systems 

Consider again the two band subband system shown in Fig. 3.1. The overall 

response as given by Eq. (3.1) is equal to, 

1 W )  = 2 { ~ o ( z ) ~ o  (4 + ~ 1 ( 4 ~ 1 ( 4 } ~ ( 4  

1 + z ( ~ o ( - " ) ~ o ( " )  + H I ( - ~ ) G I ( ~ ) } X ( - ~ )  (5.9) 

1 1 
= 5 R ( z ) X ( z )  + Z S ( z ) X ( - z )  
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where, 

HO(z) is a lowpass FIR half-band filter with N coefficients. We define Go(z) to be 

the time-reversal of Ho (2) , 

To obtain an alias-free reconstruction, we allow the highpass filters Hl(z) and Gl(z) 

to be defined in terms of Ho(z) as, 

Under these conditions, S(z) = 0 and is independent of the number of coefficients 

1 
N. Also, the overall response becomes - R(z), where 2 . . 



The z-transform Fo(z) which we will be referring to as the cascade filter response 

is defined as 

where 

N-1 
= ho(u)ho(u- n) for n =  -(N - I) ,  ..., N - I. 

u=O 

Note that Fo(z) has a zero phase frequency response, i.e. fo(n) = fO(-n). 

5.4 Reversibility 

The reversibility (exact reconstruction) condition requires that 

Referring to Eq. (5.12), since Fo(z) is a zero phase response, this is possible only if 

which makes k = N - 1. The z-transform Fo(-z) is defined in terms of fO(n) as 

To establish the conditions on fO(n), under which Eq. (5.16) is satisfied, the inverse 

z-transform of Eq. (5.16) is considered, 



At this point, we can establish the values of N for which exact reconstruction can 

be achieved. For n = 0 we have, 

Clearly, Eq. (5 .19)  and therefore Eq. (5 .18)  can be true only for even values of 

N .  This implies that odd length time-reversed filters cannot be used for exact 

reconstruction. From now on, we will consider only even length time-reversed filters 

and the exact reconstruction Eq. (5 .16)  and Eq. (5.18) are simplified to 

The conditions on fo (n)  so that -Eq. (5 .21)  is true are 

0 for n even with n # 0 

- for n = 0 2 

given that -(N - 1)  < n 5 N - 1. 

Any cascade filter response with coefficients of the form 

where w(n) is a window function, will satisfy the conditions set by Eq. (5 .22)  for 

exact reconstruction. These conditions though, are not the only requirements for 

the design of a reversible subband system since, the cascade filter response Fo(z) 

is defined by  Eq. (5 .13)  as the product of two time-reversed filters. L-.i order to 



design the subband system, we must be able to find a cascade filter response with 

odd numbered coefficients of such values that it can be decomposed into two time- 

reversed filters. 

5.5 Subband Filter Design 

The coefficients of the filters of a subband system can be expressed in terms 

of the coefficients of the filter Ho(z), therefore, we must concentrate only on the 

design of a finite impulse response lowpass filter. In the design procedure, we must 

consider two things. First, the frequency characteristics of the filter in terms of the 

bandpass and stopband ripple, the transition band width and the filter length N. 

Second, the conditions the filter must satisfy for perfect reconstruction which were 

discussed in the previous section and are described by the equation 

where, ho(n) is the nth coefficient of Ho(z), the * corresponds to a convolution 

operation, i.e. 

and w(n) is a weighting function with nonzero values in the region -(N - 1) 5 n < 
(N - 1) that are defined by the frequency characteristics of the filter. 

The approach to the design of Ho(z) is an indirect one. Instead of directly 

attempting the design of Ho(z), we will design the cascade filter response Fo(z) 

as a first step and then decompose it into two time-reversed filters.This approach 

requires the establishment of three major criteria. 
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1. The coefficients fo (n) of the cascade filter response Fo (z) must satisfy Eq. (5.22). 

2. Fo(z) can be decomposed into two time-reversed filters according to Eq. (5.13). 

3. The frequency characteristics of Fo(z) as well as its length must be such, so 

that the decomposed filters will have the specified frequency characteristics 

and length. 

5.5.1 Decomposition of Fo(z) 

To establish the conditions under which Fo(z) can be decomposed into two time- 

reversed filters, we consider the zeros and the poles of the z-transform of the filter. 

Ho(z) is an N - 1 degree polynomial and can be written in terms of its zeros and 

poles as 
N-1 

m= 1 

where G, = ho(0) and z, is the mth zero. Ho(z) has N - 1 poles at z = 0 and 

N - 1 zeros. Since the coefficients ho(n) are real, the zeros z, appear in complex 

conjugate pairs. Also, it is required that N should be an even number which means 

that the number of zeros should be odd and at least one zero (in general an odd 

number of zeros) must be real. For simplicity, we assume that Ho(z) has only one 

real zero which we refer to as z,. Equation (5.25) can be written in terms of its 

zeros in conjugate pairs as 



where z& is the complex conjugate of z,. 

The time-reversed filter Ho(z-l) can be written as 

where Gb = ho(N - 1). Referring to Eq. (5.13), the cascade filter response Fo(z) 

can be written in terms of the filter zeros zm as 

According to Eq. (5.28), Fo (2) can be decomposed into two time-reversed filters, 

if the complex roots z, appear in groups of four (z,, zh ,  l /zm, l /zL) and the real 

roots z, appear in groups of two (z,, l/z,). 

A response that appears to meet these requirements is the linear phase one. In 

general, a linear phase response has its zeros in groups of four (z,, z k ,  l /zm, l/z&) 

for lznl # 1, in groups of two (z,, z&) for lzml = 1, in groups of two (z,, 112,) 

for zm real with lzml # 1 and in groups of one for zm = &1. According to the 

Table 5.1, which considers the properties of a typical linear phase response versus 

the properties of a decomposable response in terms of zero-patterns, the linear phase 

filter that meets the requirements of Eq. (5.28) has, 

1. Double zeros on the unit circle (Izl = I), so that all the complex pairs appear 

in groups of four. 



- -- - - 

Typical linear phase I Decomposable Position 

of zeros 

zm 

Izrnl# 1 

Z, complex 

Izrnl# 1 

Zm real 

l zml=  1 

Z, complex 

lzml= 1 

zm real 

response I response 

- 
zeros per Locations zeros per 

2 

Locat ions 

1 

Comments 

z,,z;F, 

response 

2 double 

1 

or 

-1 

Table 5.1 Zero-patterns of a typical linear phase response 
versus a decomposable response 

1 double 

2. Double zero at z = -1. Note that Fo(z)  has no zeros at z = 1 since it has 

lowpass characteristics. 

3. No restrictions regarding the real value zeros and the complex ones which 

are not on the unit circle. 

In general, we can state that a linear phase response is decomposable only if the 

zeros on the unit circle are double. A zero-plot of a lowpass linear phaie response 

that has double zeros on the unit circle is shown in Fig. 5.1. 

The requirement of double zeros on the unit circle will have certain implications 
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REAL 

Fig. 5.1 Zero-plot of a lowpass linear phase decomposable 
response 

on the frequency characteristics of Fo(z) .  For z = eJW,  

Assume that a zero occurs at u = w ~  such as, H o ( w k )  = 0 as well as Fo(ejWk) = 0. 

We define $(e jW)  as the first derivative of ~ ~ ( e j ~ )  with respect to w and is equal 

Since HO(wk) = 0, the first derivative F,-$(ejwk) = 0. A typical lowpass frequency 



0 0.1 0.g 0.3 0.4 

Normal i zed Frequency 

Fig. 5.2 Frequency response of a lowpass decomposable 
response 

response which has double zeros on the unit circle, is shown in Fig. 5.2. As a result 

of the double zeros, the w-axis is tangent to response curve at the points where the 

double zeros occur. Due to the fact that all the zeros on the unit circle are double, 

the response curve never crosses the w-axis. 

5.5.2 Transformation of filter characteristics 

The design of Fo(z) is an intermediate stage to the design of the filter Ho(z) 

and for this reason the characteristics of Fo(z) must be specified in terms of the 

characteristics of Ho(z).  If the number of coefficients in Fo(z) is L and the number 
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of coefficients in Ho(z )  is N, then 

since Fo(z)  is the cascade of HO(z)  and ~ ~ ( z - ' ) .  

The transformation of the frequency characteristics can be established using 

Eq. (5.29). Since ~ ~ ( c j ~ )  = H O ~ ( W ) ,  the transformation is straight forward. For 

example, if the stopband rejection is A dB, then Fo(z)  must be designed with 

stopband rejection of 2 A  dB. 

We should note here, that the requirements for exact reconstruction impose 

certain constraints on the frequency characteristics of the filters which should be 

violated. For example, the gain at w = n / 2  which should be -3 dB and the 

bandpass ripple which, as we will show in the next section, should be the same as 

the stopband ripple. 

5.5.3 Constraints on the values of fO(n) 

The conditions on the values of the coefficients fO(n) for exact reconstruction 

are given by Eq. (5.22). Obviously, the fact that all the even numbered coefficients 

have specified values, i.e. 

- for n = 0 

0 for n # 0 

will affect the frequency characteristics of Fo(z) .  In order to establish a design 

procedure for Fo(z) ,  it is important to know how the above conditions affect its 

frequency :haracteristics. For this reason, we consider the zero phase response 



V ( z )  with coefficients that satisfy the equation, 

Clearly v(2n) = 0 and the frequency response V(w) can be written as 

N/2-1 
v (w) = 2 C lo (2k + 1) cos{(2k + 1 ) ~ )  (5.34) 

k=O 

Fig. 5.3 Frequency response of an antisymmetric function 

Due to the fact that V (w ) is the sum of cosines of odd multiples of the frequency 

w, it is easy to show that it is antisymmetric about w = 7r/2, i.e. 



Normal ized Frequency 

Fig. 5.4 Frequency response of an offset antisymmetric function 

This is illustrated in Fig.5.3. 

The frequency response of Fo(z), in terms of V (w),  is given by 

As illustrated in Fig. 5.4, the 112 offset causes the positive part of the antisymmetric 

function to move close to unity-gain line and the negative part close to the w-axis 

(zero-gain line) which makes the bandpass and stopband ripple of Fo (eJW) the same 

and the gain at w = 7r/2 equal to -6 dB (112). 

The discussion in Section 5.5.1 shows that the response Fo (z) can be decomposed 

into two time-revel.;ed filters, if its frequency response curve does not cross the w- 
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axis which implies that the frequency response curve must lie between 0 and the 

unity-gain line, i.e. 

0 5 ~ ~ ( e j ~ )  5 1 

This requires V ( w )  to be defined as 

5.5.4 D e s i g n  of F o ( z ) - W i n d o w i n g  

In the existing literature [16],[20], half-band filters, with the even numbered 

coefficients as specified by Eq. (5.32),  are designed by using window design tech- 

niques. The idea behind these techniques is to design a window w ( n )  that weights 

the coefficients of the ideal half-band filter. Both the frequency characteristics and 

the length of the resulting filter are determined by the shape of w ( n ) .  Consider a 

typical finite impulse response filter T ( z )  with coefficients t (n)  defined as 

where 

= 0 elsewhere 
It is possible to design a response, that can be decomposed into two time-reversed 

filters, out of any window design response T ( z )  using the following procedure. 

1. Obtain the antisymmetric (with respect to w = n f 2 )  response T, (z )  by 

allcwing t(0) = 0. 



lr 
2. Find the global maximum Tmu of the function Ta(eIW) for 0 5 w 5 5. 

3. Form the antisymmetric response V ( z )  with coefficients v(n) equal to 

1 
The normalization factor - makes the global maximum of the frequency 

2Tmax 

response V ( w )  equal to 112 and the frequency response obey Eq. (5.38). 

4. Obtain the decomposable response po(z) with 

for n = 0 
f o ( 4  = { !(n) elsewhere 

Normal ized Frequency Hz 

Fig. 5 .5  Frequency characteristics of a decomposable response 
Fo(z) obtained from a 63-tap rectangular response 

Due to the normalization operation that is required to ensure that Fo(z) is 

d:xornposable, the frequency characteristics of Fo(z) depend on the values of the 
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extrema of the antisymmetric response Ta(z). The difference between T,, and 

the values of the other extrema establishes the ripple of both the passband and 

the stopband. For this reason, windows like the rectangular, Hamming, Kaiser etc. 

will not produce responses with good frequency characteristics, if they are used 

to obtain the antisymmetric response Ta(z). As an example, consider the decom- 

posable response Fo(z) obtained from a 63-tap rectangular window response whose 

frequency characteristics are illustrated in Fig. 5.5. The big difference between 

the global maximum and the other extrema makes the frequency characteristics of 

the decomposable response very poor. The only window that can be used to ob- 

tain a decomposable response with good frequency characteristics is the Chebyshev 

window which results to an equiripple response. A program capable of designing 

Chebyshev windows can be found in [21]. 

5.5.5 Optimal (Minimax Error) Design of Fo (z) 

Obviously, the response Ta (z) that 

and the other extrema in the region 0 5 

able response with minimum passband 

has the maximum difference between T,, 

7r 
w 5 - minimized, will produce a decompos- 2 

and stopband ripple. Due to its nature, the 

problem of designing a response Ta(z) with such characteristics can be considered 

as an optimal Chebyshev approximation (minimax error) problem. 

A computer program for designing the optimal Chebyshev approximation to the 

desired ideal frequency response of a linear phase filter was developed by McClellan, 

Parks and Rabiner [15]. This program which implements what is known as the 
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McClellan-Parks algorithm, can design either odd or even length filters provided 

that no constraints are imposed on the values of the filter coefficients. Due to the 
I 

fact that the even numbered coefficients of Ta (z) have specified values, the response 

cannot be designed directly. For this reason the design of a linear phase response 

with at least N / 2  coefficients that are related only to the odd numbered coefficients 

of T,(z), is used as an intermediate step. 

Two different responses, one with N and the other with N - 1 coefficients 

that can be used as an intermediate step to the design of Ta(z), are considered 

in this chapter. The first one, with N coefficients, can be imagined as the result 

of a sub-sampling operation that removes the even numbered coefficients of Ta(z), 

followed by a time-shift operation to form a causal even length response with the 

odd n~mbered~coefficients. Mathematically this operation is expressed as 

where ul(n) is the nth coefficient of the intermediate step response with n = 

0,1,. . . , N  - 1. The relationship between the z-transforms Ul ( z )  and Ta(z) is given 

We obtain the formula that translates the frequency characteristics of Ta(z) into 

characteristics of U1(z) by evaluating the above relationship on the unit circle. For 

z = 



where Ul ( w )  = ~ ~ ~ ( e j ~ )  I and T a ( w )  =  IT^(^'^) I. After the design of UI ( z ) ,  the 

coefficients of T a ( z )  can be determined by the formula 

f 0  
for n even 

t a ( n )  = n + N - 1  (5.45) 
) for n odd 

The second response U 2 ( z )  that can be used as an intermediate step to the 

design of T a ( z ) ,  has N  - 1 coefficients which satisfy the equation 

A2 ' 
with a n )  # 0  for n = 0 , 1 , .  . . , N-2.  This corresponds to the following relationship 

between the z-transforms. 

For z  = e jw ,  we obtain the formula that relates the frequency characteristics of 

T a ( z )  to those of U 2 ( z ) ,  

1  
U2(2w) = Ta ( w )  (5.48) 

2  cos ( w )  

where U2(w)  = 1u2 (e jw)  1 .  After the design of U 2 ( z )  the coefficients of ~ ~ ( 2 )  can be 

determined by the formula, 

( 0  for n  even 

t a ( n )  = n + N - 1  n + N - 1  
) + ~ 2 (  2  - I )  for n  odd 

5.5.6 Extraction of the coefficients h o ( n )  

As was mentioned earlier in this section, the design of the cascade filter response 

Fo(z )  is an intermediate step to the design of the lowpass half-band filter H o ( z ) .  
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Referring to Eq. (5.14), the coefficients fo(n) of the cascade filter response are equal 

for n = 0,1,.  . . , N - 1. For a given set of values f,j(n), it is possible to determine 

the coefficients ho(n) by solving the N nonlinear equations derived from Eq. (5.50). 

Due to the fact that more than one set of values ho(n) can be found to satisfy the 

above set of equations, the problem can be better solved in the z-domain rather 

than the time domain. 

Consider the z-transform of Eq. (5.50) 

and the relationship between Ho(z) and ~ ~ ( z - ' )  in terms of their zero-patterns 

described by Eq; (5.26) and Eq. (5.27). Assuming real valued coefficients ho(n), 

for every complex conjugate pair of zeros (z,, z h )  in Ho(z), there is a complex 

conjugate pair of zeros (I/%,, l/z&) in ~ ~ ( 2 - l )  and for every real zero z, in Ho(z) 

there is a real zero l/z, in Ho(z-l). The number of different ways, the response 

Fo(z) can be decomposed into two time-reversed filters, depends on the number of 

zeros that are not on the unit circle and is given by the formula 

where k and 1 represent the number of zero-groups of the form (z,, z7*, , l/z,, l/z7*,) 

for lz,l # 1 and (z,, l/z,) for z, # 1 respectively. 

The amplitude characteristics of the filter Ho(z) are independent of the way 

the response Fo(z) is decomposed, which affects only its phase characteristics. An 



REAL 

Fig. 5.6 Zero-plot for maximum/minimum phase filters 

interesting way to decompose the response Fo(z)  is by allocating all the zeros inside 

the unit circle to the filter H O ( z )  and all the zeros outside the unit circle to its time- 

reversal H~ (z- ' )  as illustrated in Fig. 5.6. This way makes Ho ( z )  a minimum phase 

filter and ~ ~ ( 8 )  a maximum phase one. Obviously, the way & ( z )  is decomposed 

is not critical since the subband system will still be reversible. 

To determine the values of the coefficients ho (n) after the zeros are allocated to 

the filters, we first create a N - 1-degree polynomial K ( z )  such as 

where z ,  is the mth zero allocated to H o ( z )  and k, is the nth coefficient of K ( z ) .  

The values of the coefficients kn can be expressed in terms of the zeros zm using 

- 9s - 



the formulas: 

kN-1  = 1 

ko = -212223.. . ZN-1 

Referring to Eq. ( 5 . 2 6 ) ,  H o ( z )  can be expressed in terms of K ( z )  by the formula 

H o ( r )  = G . z - ( ~ - ' )  K ( z )  

The inverse z-transform of Eq. (5 .55)  determines the relationship between the co- 

efficients h o ( n )  and k,, 

The gain G ,  can be determined by using at least one of the coefficients f O ( n )  of the 

cascade filter response Fo (2) and the easiest way is to consider f o ( N  - 1). Referring 

to Eq. (5 .50)  and E q .  (5 .56) ,  for n  = N - 1, 

Since k N - 1  = 1, 

and the values h o ( n )  can be found using Eq. ( 5 . 5 6 ) .  



The method to determine the values of ho(n) makes the assumption that the 

zeros of the cascade filter response Fo(z) are known. Consider the 2N - 2 degree 

shifted polynomial Fo(z) defined as 

Fo(Z) = Z N - l ~ o ( Z )  

with ja(n) = fo(n - N + 1 ) .  Except for trivial cases where analytical solutions can 

be applied, the problem of finding the zeros of the polynomial Fo(z) is solved using 

numerical methods. A zero-finding algorithm for polynomials with real coefficients 

that can be successfully used to determine the zeros of F0(z), is included in the 

IMSL software package [22]. This algorithm iterates towards a zero using Laguerre's 

method which is cubically convergent for isolated zeros and linearly convergent for 

multiple zeros. 

5.5.7 Reoptimization of the coefficients ho(n) 

In general, the values of the zeros of a polynomial that are obtained by using a 

numerical method, are approximations of the actual values. The "goodness" of the 

approximation depends not only on the type of arithmetic used (single or double 

precision) but also on bounds set for the acceptance of a specific value as a zero. 

Obviously, the error due to these approximations accumulates when the values of 

the coefficients ho(n) are computed, resulting to a filter that does not obey the 

conditions for a reversible subband system. To compensate for the accumulated 

error, the computed coefficients are adjusted by using an optimiyation algorithm 
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(Hooke and Jeaves method [17] ) which attempts to minimize a single objective 

function over several variables which in this case are the coefficients h o ( n ) .  

To obtain an objective function that can best adjust the values of the coefficients 

h o ( n )  , we first consider the error function e(n) defined as 

e (n )=I fo (n ) -ho(n )*ho( -n ) l  for n = - ( N - 1 )  ,..., 0 ,..., N - 1  (5.60) 

which obviously depends on 

the functions E, and E, as 

the precision of the zero determination. We also define 

even even 

odd 

E, is the overall error for the zero valued coefficients and its value is related to the 

distortion, the overall system response will suffer due to the nonperfect decompo- 

sition of the cascade filter response Fo(z) .  E, is the overall error for the nonzero 

coefficients and its value is related to the level of matching between the actual and 

the expected frequency characteristics of the filter H o ( z ) .  

The single metric E, that is to be used as the objective function is constructed 

from E, and E,. 

where a is the weighting that denotes the emphasis given to the overall system 

distortion as opposed to the frequency characteristics of the filter H o ( z ) .  
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5.5.8 Extraction of the Coefficients h l ( n ) ,  g o ( n )  and g l ( n )  

The coefficients of the filters HI ( z ) ,  Go ( z )  and Gl ( z )  can be obtained by con- 

sidering the inverse z-transforms of Eq. (5.11). For N even, 

h l ( n )  = (-l)"+' h o ( ~  - 1  - n) 

go (n)  = ho (N  - 1 - n) 

g 1 ( n )  = (- lInho(n> 

5.5.9 Summary of the Filter Design Procedure 

The procedure for designing the filters for the subband system by using the 

Parks-McClellan algorithm, is summarized into the following steps. 

1. Choose between U l ( z )  and U2(z )  the transformation response to be used and 

obtain its characteristics from the expected characteristics of Ho(z ) .  

2. Use the Parks-McClellan algorithm to design either U l ( z )  or U2(z ) .  

'3. Obtain the antisymmetric response T,(z)  and estimate its global maximum 

4. Obtain the antisymmetric response V ( z )  by normalizing the coefficients of 

1 
T a ( z )  with r. 

max 

5. Obtain the cascade filter response Fo(z )  from V ( z ) .  

6. Find the zeros of Fo ( 2 ) .  



7. Allocate the zeros to the two time-reversed filters Ho(z)  and ~ ~ ( 2 - l )  and 

obtain their coefficients. 

8. Reoptimize the values of the coefficients ho(n )  by minimizing some error 

function. 

9. Determine the coefficients of H l ( z ) ,  Go( z )  and G l ( z )  

Fig. 5.7 Implementation of the Analysis Filter Bank 

5.6 Implementation of the Subband System 

Figures 5.7 and 5.8 give an implementation of the analysis and the reconstruc- 

tion of the input signal respectively. Unlike the linear phase QMF filter banks, 

exact reconstruction filter banks are inefficient in terms of the computation load. 

The number of multiplications per chan.:lel to be performed for every second input 
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J 

Fig. 5.8 Implementation of the Reconstruction Filter Bank 

sample, is equal to the filter length N with N - 1 additions almost twice the calcu- 

lations required by a linear phase. Obviously, the inefficient implementation of the 

exact reconstruction filter banks is their main disadvantage over the linear phase 

QMF filter banks. 

ANALYSIS 1 1  I RECONSTRUCTION 

Fig. 5 .9  Subband system with unequal width subbands 

Consider the tree structure analysis/reconstruction subband system shown in 

Fig. 3.7 repeated here as Fig. 5.9. As it was argued in Chapter 3, the amplitude 

distortion accumulates when linear phase QMF filter banks are used which might 
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be disturbing for a high quality subband system. Also, the band-splitting used, 

which results in unequal width subbands requires an equalization filter C ( z )  equal 

to the overall response of a two band subband system 

otherwise, the reconstructed signal will suffer from aliasing as well as amplitude 

distortion. 

Exact reconstruction filter banks appear to have a better performance. Clearly, 

there is no amplitude distortion accumulation and since the overall response of a 

two band subband system is a pure delay, the equalization filter C ( z )  is a pure 

delay. If Ho(z)  has N taps then 

An attractive way of splitting the signal into unequal width subbands could 

utilize both linear phase QMF and exact reconstruction filter banks. Consider 

again Fig. 5.9, it is possible to use linear phase QMF filters for the first splitting 

and exact reconstruction for the second one so that the equalization filter C ( Z )  will 

be a pure delay. By introducing this splitting scheme, we save computations due to 

the linear phase filters of the first splitting and the use a pure delay for equalization. 

Obviously, the overall system response will suffer some amplitude distortion but not 

as much as if all the filters were linear phase ones. 



Design Details 

Chapter 6 for 

Exact Reconstruction Filter Banks 

6.1 Introduction 

The procedure for designing exact reconstruction filter banks for subband sys- 

tems, discussed in Chapter 5, is based on the filter design algorithm by McClellan 

and Parks [15]. It appears that this algorithm, in its original form, can be used 

to design equiripple filters, a result of equal-weighted Chebyshev approximations. 

The algorithm requires some modifications, if it is to be used for the design of 

non-equiripple filters. 

In this chapter, we discuss the McClellan-Parks algorithm and the way it can be 

modified for unequal-weighted approximations so that non-equiripple filters can be 

designed. We also discuss an alternative approach to the design of non-equiripple 

filters. Unlike the McClellan-Parks algorithm which designs optimum Chebyshev 

approximations without any manual intervention, this approach can be used to 



design filters which exactly satisfy a necessary but sufficient number of conditions. 

Manual intervention is required in order to establish the conditions for which the 

filter response has acceptable characteristics. 

6.2 McClellan-Parks Algorithm 

The McClellan-Parks algorithm designs the optimal Chebyshev approximation 

to the desired ideal frequency response for linear-phase FIR filters. This is done very 

efficiently by using the Remez exchange algorithm. A detailed analysis of this filter 

design method can be found in [20],[15] which are the main sources of information 

for the brief discussion to be followed. 

Consider the Fourier transform of a linear-phase filter ~ ( e j ~ )  which is defined 

as follows: 

where H(w) = 1H(ejW)l and L = 0 or 1. The linear-phase filters are divided 

according to the length N (even or odd) and according to the symmetry [~ositive 

(L = 0) or negative (L = I)] of their impulse response, into four different types. 

For each type, the frequency response H ( w )  can be expressed as follows: 

Type 1: Positive Symmetry, odd length: 

where N1 = (N  - 1)/2. 



Tgpe 2 Positive symmetry, even length: 

where N1 = N/2. 

Type S: Negative symmetry, odd length: 

N1-1 
H (w) = sin(w) C c(n)cos(wn) 

n=O 

where Nl = (N - 1)/2. 

Type 4: Negative symmetry, even length: 

where Nl = N/2. The valu~s of a(.?), b(n), c(n) and d(n) can be expressed in terms 

of the values of the coefficients h(n) and the expressions can be found in [15]. 

The above expressions can be used to combine the design of all four types of 

filters into one algorithm. This can be accomplished by expressing H(w) as 

where P ( w )  is a linear combination of cosine functions. The motivation of expressing 

the four type into a common form is that a single central computation routine based 

on the Remez exchange method can be used to calculate the best approximation 

in each of the four types. This is accomplished by modifying both the desired 

magnitude function and the weighting function to formulate a new approximation 

problem. 
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The original approximation problem can be stated as follows: given a desired 

magnitude response D(w) and a positive weight function W(w), both which are 

continuous on the compact subset of [0, T ]  and given one of the four types of linear- 

phase filters, then one wishes to minimize the maximum absolute weighted error 

over the set of coefficients of H (w). The error function E (w) can be written as 

omitting the points where ~ ( w )  = 0. 

By defining 

we obtain the equivalent approximation problem to minimize the following function 

over the set of coefficients of P(w). F' is the new set that does not include the 

end-points where Q(w) = 0. 

The design makes use of the Alternation Theorem which states that if P ( w )  is 

a linear combination of cosine functions, i.e. 



then a necessary and sufficient condition that P ( w )  be the unique best weighted 

Chebyshev approximation to a continuous function ~ ( w )  on F' is that the error 

function E ( w )  has at least r + 1 extremal frequencies w; in F' such as 

and 

E ( w i )  = - E ( W ~ + ~ )  for w; < w ; + ~  (6.13) 

This theorem says that given a set of coefficients p ( n )  n = 0 , l . .  . , r  - 1  for P(w)  and 

a set of extremal frequencies w; i = 0 , l . .  . , r ,  P ( w )  is the optimum approximation 

From the above set of equations we can express the optimum deviation 6 as 
r 

C a i B ( w i )  
i=O 6 =  (6.15) 
( - l )e!L 

i=o W w i )  
where 

and 

Also, from the deviation 6 and the extremal frequencies wi ,  using the Lagrange 

interpolation formula in its barycentric form we can express P ( w )  as 



where 

and 

INPUT FILTER 
SPECIFICATIONS 

1 1 
[BANDPASS] IDIFFERENTIATOR] H l LBERT 

TRANSFORM 
I 

DENSE GRID FOR 

APPROXIMATION PROELEM 

I RESPONSE 
I 

OPTIMAL ERROR AND 

Fig. 6.1 Flowchart of the McClellan-Parks algorithm 
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A flowchart of the McClellan-Parks algorithm is shown in Fig. 6.1 and consists 

of the following four steps: 

I. An input section in which the desired frequency response D(w), the weighting 

function W (w), and the filter length N is specified. 

2. A formulation of the appropriate equivalent problem, i.e. formation of ~ ( w ) ,  

w ( w )  and P (w) . 

3. Solution of the approximation problem using the Remez exchange algorithm. 

4. Calculation of the filter impulse response. 

The first step is the interface between the designer and the program where the 

specifications are inserted into the program. The second is the formulation af the 

equivalent problem already discussed. 

As a third step, the Remez exchange algorithm is used to solve the approxi- 

mation problem. The flowchart of this algorithm is shown in Fig. 6.2. First, the 

algorithm guesses the positions w; of the r + 1 extrema in P ( w )  and finds the op- 

timum value of 6 using Eq. (6.15). After calculating 6, the program interpolates 

P ( w )  on the r points w; i = 0, I . .  . , r - 1 using Eq. (6.18) and then calculates the 

error function E ( w ) .  If IE(w) l  5 6 for all the frequencies in F', then the optimum 

approximation is found, otherwise if I E (w) 1 > 6, the extremal of E ( w )  are chosen as 

the new candidates for extremal frequencies and the procedure is repeated again. 

The new set of extremal frequencies will force 6 to increase and finally converge to 

its upper bound. 
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Fig. 6.2 Flowchart of the Remez exchange algorithm 

6.3 Design of Antisymmetric Functions with 
McClellan-Parks Algorithm 

As it was stated in the previous chapter, a zero-phase antisymmetric function 

T a ( z )  must satisfy 

ta(2n)  = 0 (6.22) 

Due to its antisymmetric property, the problem of designing the Chebyshev ap- 

proximation to its desired value, can be stated as the minimization of the absl.~lute 
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maximum error that is defined as 

where the desired-value function D(w), the weighting function W (w) and Ta(w) are 

7r 
defined in the region F 10, 2) .  

Since Ta(z) cannot be designed directly by the algorithm, we form the equivalent 

problem using either the transformation Ul (z) or U2 (2). 

For Ul (z), the transformation formula is given by Eq. (5.44) with 

71 
in the region [0, and the equivalent approximation problem becomes the mini- 

where 

in the region Fl [0, .TI .  

For U2(z), the transformation formula is given by Eq. (5.48) with 

7r 
in the region [O, 2 )  and the equivalent problem becomes the minimization of 



where 

6.4 Design of Antisymmetric Functions for Exact 
Reconstruct ion Systems with McClellan-Parks 
Algorit hrn 

As it was described in the previous chapter, the appropriate antisymmetric 

function V (2) that can be used to derive the exact reconstruction filters must satisfy 

the equation 

In general, the corresponding desired functionQ(w) for the above antisymmetric 

response, is defined as 

1 
D(w) = 2 

7r 
in the region. 0 .s w 5 w, with w, < - which corresponds to the passband and is 

2 
7r 

left to be undefined in the region w, < w < - which corresponds to the transition 
2 

band. 

Due to the existence of the upper and lower bounds the approximation problem 

must be redefined so that the designed function V(w) be tangent to the desired 

7r 
function D(w) at any local maximum in the region (0, -), i.e. 2 



7r 
where w; are the extremal frequencies in [0, -) and 1 = 0 or 1  depending whether 2  

the first extremal is a maximum or a minimum. 

This problem can be solved by using the original McClellan-Parks algorithm 

provided that the weighting is the same for all frequencies. Given a desired function 

, D ( w )  and the corresponding optimum approximation V ( w ) ,  it is easy to prove the 

linearity property which implies that the optimum approximation to C k D ( w )  where 

C k  is a constant, is C k V ( w ) .  Assuming that the weight function W ( w )  is equal to 

unity, the above set of equations can be expressed as 

i+1 6  (6.33) ( I  - 26)  D(w; )  - V ( W ; )  = ( - 1 )  

provided that D ( w )  is defined as in Eq. (6.31). Since 6  is constant, an equiv- 

alent problem can be formed with C k D ( w )  as the desired function and T a ( w )  

the optimum approximation to C k D ( w )  that can be solved with the McClellan- 

Parks algorithm using the transformations described in the previous section. The 

function V ( w )  will be then determined by normalizing T a ( w )  with 1/2Tm,  where 

Tmax = m a x w ~ ~ { T a ( w ) ) .  

If the weight W ( w )  depends on the frequency, the McClellan-Parks algorithm 

can not design V ( w )  to satisfy Eq. (6.32).  One possible way of designing V ( w )  is to 

modify the Remez exchange algorithm to solve for the equivalent problem that is 

to find the extremal frequencies w; to satisfy the set of equations 

Instead, we use a different method which is easier to implement, provided that the 

original Remez algorithm exists. 



Consider Eq. (6.32) rewritten as follows 

and its equivalent as 

If 6 was known, we would have established a new problem with the same weight 

function W ( w )  and a desired function D1(w)  equal to 

which could be solved with the original Remez algorithm. Since D1(w) is not known 

a priori, we modify the Remez algorithm so that the original desired function D(w)  

can be adjusted and finally converge to D1(w)  the same time the algorithm iterates 

towards the optimum solution. 

Consider the modified Remez exchange algorithm illustrated in Fig. 6.3. Every 

time the new deviation 6 is calculated and the new extremal frequencies are obtained 

the desired value ~ ' ( w )  is adjusted to 

where ~ ( w )  is the equivalent of the original desired function and ~ ( w )  is the equiv- 

alent weight function. For the modified algorithm, it is true that if the algorithm 

finally converges and exits the loop, the solution obtained will satisfy Eq. (6.32). In 

this case, the deviation 6 does not necessarily increase to its upper bound through- 

out the process, it might oscillate about its optimum value before reaching its steady 

state. 
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Fig. 6.3 Flowchart of the modified Remez exchange algorithm 

In a subband coding system, a good isolation between the subbands is required 

in order to prevent the quantizing noise that is generated in a particular band to 

spread to the other bands. Obviously, the performance of the system in isolating 

the bands depends on the frequency characteristics of the analysis and the recon- 

struction filters. With the original McClellan-Parks algorithm only equiripple filters 

can be designed where as with the new algorithm that uses the modified Remez ex- 

change algorithm, a designer can control the frequency characteristics of the filters 



Norma\ i z e d  Frequency Hz 

Fig. 6.4 32-tap equiripple filter designed by the modified 
Remez exchange algorithm 

Normal i zed Frequency Hz 

Fig. 6.5 32-tap non-equiripple filter designed by the modified 
Remez exchange algorithm 

through the weighting f~nct ion W ( w )  and design filters that perform better than 



the equiripple ones in isolating the subbands. For example, consider the frequency 

characteristics of two lowpass filters shown in Fig. 6.4 and Fig. 6.5 that were de- 

signed using the modified Remez exchange algorithm. Both filters have the same 

number of coefficients (N = 32) and the same cutoff frequency (w, = 0 . 4 ~ ) .  For 

the first filter shown in Fig. 6.4, the weighting function W ( w )  was constant where 

as for the second filter shown in Fig. 6.5, the weighting function was the one given 

by the equation 

W 
W ( W )  = l O ( 1 -  -) + 1 (6.39) 

w  c 

Examining the frequency characteristics of the two filters, one should note that the 

stopband attenuation of the second filter is improved by up to 7 dB except for the 

very first lobe where the attenuation is decreased by approximately 2 dB. For some 

applications, this slight degradation of the attenuation performance in one part of 

the stopband will be permitted for the considerable improvement of the attenuation 

in the rest of the stopband. 

6.5 An Alternative Approach to the Design of 
Antisymmet ric Functions 

In this section we present an alternative approach to the design of non-equiripple 

antisymmetric functions. Unlike the approach introduced in the previous section 

where the design of antisymmetric functions was done by a modified version of the 

McClellan-Parks algorithm without any need for manual intervention, the approach 

introduced in this section requires some manual intervention in order to obtain a 

function with ac eptable frequency characteristics. It was used before the modified 
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version of the McClellan-Parks algorithm was developed, in order to improve the 

frequency characteristics of the equiripple functions which could be designed by the 

original version of the algorithm. 

Referring to Eq. ( 5.33) and Eq. (5.34), the frequency response of an antisym- 

metric function V(w) can be written in terms of its coefficients v ( n )  as 

where N  is the number of coefficients in Ho(z). According to the above equation, 

the behaviour of V (w) depends on the values of the N / 2  coefficients v(2k + 1) 

for k  = 0,1,.  . . , ( N / 2  - 1 ) .  This implies that N / 2  independent conditions on the 

behaviour of V(w) are necessary and sufficient to determine the values of these 

coefficients. Clearly, these conditions must not violate the basic requirement for the 

exact reconstruction filters given by Eq. (6.30). 

We are interested on the antisymmetric functions which have all their local 

7r 1 
maxima that occur in the region [0, -) tangent to the line w = - These functions 2 2 ' 

7r 
have a total of N / 2  extrema occurring in the region (0, -). Depending on whether 2  

N / 2  is an even or odd number they have respectively N / 4  maxima and N / 4  minima 

or ( N  + 2 ) / 4  maxima and ( N  - 2 ) / 4  minima. The first extremum occurs at w = 0 

and is either a maximum, if N / 2  is an odd number, or a minimum, if N / 2  is an 

even number. The last extremum is always a maximum. 

Assuming that N / 2  is an even number and that the frequencies at which the 

local maxima occur are w;, i = 0, I , .  . . , N / 4  with 0 < w; < w;+l, we can write 

the folll ,wing set of N / 4  equations that indicate the occurrence of extrema at these 



frequencies. 

for i = 1 , 2 , .  . . , N / 4 .  To indicate that the above N / 4  extrema are tangent to the 

1  
line w = -, we form the following set of equations. 

2  

for i = 1 , 2 , .  . . , N / 4 .  

Assuming that N/2 is an odd number and that the frequencies at which the 

local maxima occur are w;, i = 1 , 2 , .  . . , ( N  + 2 ) / 4  with w l  = 0 and w; < we 

can write a set of (N - 2 ) / 4  equations that indicate the occurrence of extrema at 

these frequencies. 

for i = 2 , 3 , .  . . , ( N  + 2 ) / 4 .  Note that we do not need to write an equation for the 

extremum that occurs at w = 0. To indicate that the above ( N  + 2 ) / 4  extrema are 

1  
tangent to the line w = -, we form the following set of ( N  + 2 ) / 4  equations. 

2  

for i = 1 , 2  ,... , ( N  + 2 ) / 4 .  

In both of the above cases, the total number of equations is N / 2  and is equal to 

the number of unknown coefficients. This implies that it is possible to obtain the 

values of the coefficients by imposing conditions on the locations and values of the 

maxima and then solving the above described set of linear equatjons. We should 
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note that the expected locations of the maxima must be carefully chosen since the 

above set of equations guarantees only the occurrence of extrema 'at the specified 

locations which can be either maxima or minima. Another important fact we must 

keep in mind, is that by increasing the distance between two consecutive maxima, 

the size of the ripple defined by these maxima will increase too. 

Normal ized Frequency Hz 

Fig. 6.6 32-tap filter designed by specifying the location of its 
maxima 

One possible application of this approach is to modify the frequency character- 

istics of an existing antisymmetric function by changing the location of its maxima. 

Obviously, this approach implies a trial and error solution, if we are to design a 

function that is somehow better than the original one. As an example, consider 

the filter shown in Fig. 6.6 which was designed from the antisymmetric function 

that corresponds to the equiripple filter in Fig. 6.4 by changing the location of its 
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maxima. 



Chapter 7 

Performance 

of 

Exact Reconstruction Filter Banks 

7.1 Introduction 

The major difference between linear phase QMF filters and time-reversed QMF 

filters is that time-reversed QMF filters, in the absence of individual channel coders, 

do not introduce any amplitude distortion to the response of a subband system. 

Minimization of amplitude distortion in the system response is always considered 

a major criterion for the design of linear phase QMF filters whereas for the design 

of time-reversed QMF filters it is taken for granted. The design of time-reversed 

QMF filters is based on the following three parameters: 

I. The number of coefficients N 

2. The width of the transition band Wt.  

3. The stopband attenuation A, .  



The number of filter coefficients N determines the overall delay caused by the 

system as well as the number of computations required to implement the system. 

Both factors are important for real time applications. The width of the transition Wt 

as well as the stopband attenuation A,,  determine the leakage between the subbands 

which is always considered an important factor in the presence of the individual 

channel coders. The stopband attenuation A,  also determines the passband ripple 

since the two, on a linear scale, complement each other. 

The design of time-reversed filters discussed in Chapter 5 and Chapter 6 is done 

by specifying the number of filter coefficients N, the sampling frequency f,, and 

the cutoff frequency j,. The radial cutoff frequency w, is given by 

The desired value function D(w) and the weighting function W (w) are then specified 

7r 
in the region 0 5 w 5 w, with w, < - For a lowpass filter, the region 0 5 w 5 w, 2 ' 

is defined to be the passband, the region w, < w < n - w, the transition band and 

the region n - wWe 5 w 5 7r the stopband. According to this definition, the passband 

and stopband are the regions where the ripple is minimized whereas the transition 

band is the region where the response is not controlled. The width of the transition 

band Wt , in terms of w,, is given by 

The above three criteria for the design of time-reversed QMF filters, always 

depend on each other and only two of them can be specified at a time. The third is 
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left to be defined in terms of the specified ones. In the implementation of the filter 

design procedure, for a given weighting function W (w) , the stopband attenuation 

A, is left to be determined as a function of the number of coefficients N and the 

width of the transition band Wt. This implies that filters with constraints on their 

stopband attenuation must be designed by trial and error unless a relationship 

between A,, Wt and N is developed. 

In this chapter, we consider the performance of time-reversed filters in terms of 

the stopband attenuation A, as a function of the the weighting W ( w )  , the number 

of filter coefficients N and the width of the transition band Wt. We include per- 

formance charts for three different weighting functions which enable the designer 

to relate the filter design parameters and make tradeoffs between them. We fi- 

nally discuss the performance of the time-reversed filters in subband systems, when 

implemented with finite precision arithmetic. 

7.2 Equiripple Time-Reversed Filters 

The performance of time-reversed QMF filters with equiripple characteristics is 

illustrated in Fig. 7.1. Referring to Fig. 7.l.a, it appears that for a given number 

of coefficients N, the stopband attenuation As increases almost linearly with the 

width of the transition band Wt. Figure 7.1.b shows that for a given value of Wt, 

a similar relationship occurs between As and N. These observations indicate that 

the behaviour of the stopband attenuation A, as a function of N and Wt can b:. 
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a 
'0 e.1 a a  n.: 

WIDTH U t  
li 

a) Stopband attenuation A, versus width of transition band Wt 
(normalized by n (f,,) ) : counterclockwise 
N = l6,2O, 24,. . . ,48 

N 

b) Stopband Attenuation A, versus number of coefficients N: 
counterclockwise Wt = 0 . 0 4 ~ ,  0 . 0 6 ~ ,  0 . 0 8 ~ ,  . . . , 0 . 3 2 ~  

Fig. 7.1 Performance charts for equiripple time-reversed QMF 
filters 



approximated by a formula of the form 

where ml ,  . . . , mq are constants. Minimization of the mean square error gives 

where A, is in dB's, N takes even values and Wt is normalized with respect to 

n (f,,). This yields an absolute maximum approximation error of of less than 0.5 

dB. 

7.3 Non-Equiripple Time-Reversed Filters 

The performance of time-reversed filters with non-equiripple characteristics have 

been considered for two different weighting functions W ( w ) .  The first weighting 

function is given by 

W 5T 
W ( w )  = l O ( 1 -  -) + I for O 5 w 5 - 

w c 2 (7.5) 

This function yields a difference of 10.4 dB between the stopband attenuation a t  

w = T and at  w = .rr - w,. The performance of the filters is shown in Fig. 7.2 

where the maximum stopband attenuation A, which occurs a t  w = n, is considered. 

Figure 7.2.a shows the relationship between the stopband attenuation A, and the 

width of the transition band Wt for different number of coefficients N. Figure 7.2.b 

shows the relationship between the stopband attenuation A, and the number of 

coefficients N for different values of the width Wt. 
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a) Maximum stopband Attenuation A, versus width of 
transition band Wt (normalized by 7r (fm,) ): 
counterclockwise N = 16,20,24,. . . ,48 

b) Maximum stopband attenuation As versus number of 
coefficients N: counterclockwise 
Wt = 0.04~, 0.06~, 0 .08~ ,  . . . ,0 .32~ 

Fig. 7.2 Performance charts for non-equiripple time-reversed 
QMF filters obtained by using Eq. (7.5) 



A formula of the form given by Eq. ( 7 . 3 )  can be used to approximate the rela- 

tionship between A,, N and Wt. Minimization of the mean square error gives 

This formula yields an absolute maximum approximation error of less than 0.8  dB. 

The second weighting function that have been used is given by 

W 7r 
W ( w )  = 5 0 ( 1 -  -) + I  for 0  5 w < - 

w c 2  ( 7 . 7 )  

This function yields a difference of 17.1 dB between the stopband attenuation at 

w = 7r and at w = 7r - w,. In a similar way as to the previous example, Fig. 7 . 3  

shows the performance of the designed- filters. A similar formula to Eq. (7 .3 )  that 

relates the stopband attenuation A, to N and Wt, is also obtained. 

A, = 6 . 8 2 9 W t N  - 4.875Wt + 0.02I.N + 15.240 (7 .8 )  

This formula yields an absolute maximum approximation error of less than 1.0 dB. 

7.4 The Effect of Weighting on Filter Designs 

Figure 7.4  shows the performance of equal-length time-reversed filters designed 

with the three different weighting functions discussed in the previous sections. Each 

weighting function is represented by two curves that correspond to the maximum 

and minimum attenuation except for the equal-weighting (equiripple) one that is 

represented by a single curve. The inner curve corresponds to equiripple filters, 

the next two curves correspond to filters designed with the weighting given by 
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a) Maximum stopband attenuation A, versus width of 
transition band Wt (normalized by 7r (f,,) ): 
counterclockwise N = 16,20,24,. . . ,48 

m, 

b) Maximum stopband attenuation A, versus number of 
coefficients N: counterclockwise 
Wt = 0.04~,0.06n,0.08~,  . . . , 0 . 3 2 ~  

Fig. 7.3 Performance charts for non-equiripple time-reversed 
QMF filters obtained by using Eq. (7.7) 



b) Maximum and Minimum attenuation A, versus width of 
transition band Wt (normalized by 7r (f,,,) )for N = 36 
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a ,  
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Fig. 7.4 Performance charts of equal-length time-reversed 
QMF filters with different weightings 
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a) Maximum and Minimum attenuation A, versus width of 
transition band Wt (normalized by 71. (f,,) ) for N = 32 
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Eq. (7.5), and the outermost curves correspond to filters designed with the weighting 

given by Eq. (7.7). The maximum and minimum attenuation curves diverge from 

the equiripple curve as the weighting function diverges from the equal-weighting 

function. 

The performance of the filters designed with a particular weighting function 

is examined in terms of the relative positions of the corresponding maximum and 

minimum attenuation curves. with respect to the equiripple curve. For a given 

width Wt, the distance between the equiripple curve and the maximum attenuation 

curve corresponds to the improvement in the stopband attenuation characteristics 

whereas the distance between the equiripple curve and the minimum attenuation 

curve corresponds to the price that must be paid for this improvement. Figure 7.4 

shows that for small values of Wt, the equiripple curve lies-close to the minimum 

attenuation curves. The distance between these curves increases as Wt increases. 

On the other hand, the distance between the maximum attenuation curve and the 

equiripple curve decreases as Wt increases. This implies that for filters with narrow 

transition bands, unequal weighting functions can be used to improve the stopband 

attenuation characteristics whereas for filters with wide transition bands equiripple 

designs are more attractive. 

The performance of time-reversed QMF filters designed with different weight- 

i n g ~  as a function of the number of coefficients N, is shown in Fig. 7.5. As in the 

previous figure, the inner curve corresponds to equiripple filters, the next two curves 

correspond to filters designed with the weighting given by Eq. (7.5) and the out- 



a) Maximum and minimum attenuation A,  versus number of 
coefficients N for Wt = 0.20~ 

b) Maximum and minimum attenuation A, versus number of 
coefficients N for Wt = 0 . 2 4 ~  

Fig. 7.5 Performance charts of equal-width Wt time-reversed 
QMF filters with different weightings 



ermost curves correspond to filters designed with the weighting given by Eq. (7.7). 

The curves appear to be parallel to each other which implies that the weighting 

one must use to improve the characteristics of the filters, does not depend on the 

number of coefficients N. 

7.5 performance of Time-Reversed QMF Filters in 
subband Systems 

The performance of time-reversed QMF filters in subband systems have been 

examined by computer simulation using single precision floating point arithmetic. 

A number of filters summarized in Appendix A, have been designed and tested in 

the absence of individual channel coders. 

With frequency selective input signals, the alias-free condition was examined. 

It was found that with single precision floating point arithmetic, the aliasing intro- 

duced by the systems is negligible. The exact reconstruction condition was examined 

with allpass input signals. It was found that the amplitude distortion introduced 

by the systems is also negligible (not more than 0.0004 dB). 



Chapter 8 Conclusions 

The intention of this work was to discuss different filter families that deal with 

the issues involved in the design of subband coding systems. Redundant informa- 

tion have been always considered a first priority issue in the design of subband 

coding systems. For this reason, only filters that belong to the general family of 

fractional-band filters were considered. Specifically, linear phase QMF filters, IIR- 

QMF filters, and Pseudo-QMF filters were briefly discussed whereas nonlinear phase 

time-reversed QMF filters were given more emphasis. 

Linear phase QMF filters can be used to remove aliasing and phase distortion. 

They introduce amplitude distortion which can be controlled and minimized with 

special filter design techniques. Their implementation can be accomplished in a 

very efficient way by taking advantage of certain similarities between the filter 

coefficients. They are mainly designed for two band subband systems but they can 

be also used in tree structures (or the equivalent parallel structures) for multiband 

systems. 

IIR-QMF filters can be designed to remove aliasing and amplitude distortion 



but they introduce phase distortion. The level of the phase distortion is some- 

times severe even for speech signals and limits their applications. It is suggested 

that they should be used for the outermost stages of tree-structured multiband sys- 

tems to reduce delay, computational load with only a moderate phase distortion. 

Their implementation can be also accomplished in a very efficient way due to some 

similarities between the filter coefficients. 

Pseudo-QMF filters represent a different category of filters that can be used for 

multiband systems. They are designed to remove the aliasing due to adjacent bands 

only and they.introduce amplitude distortion. Their main advantages are that they 

can be implemented very efficiently and that they can be used for an arbitrary 

number of equal-bandwidth bands whereas with tree structures, the number of 

equal-bandwidth bands is constrained to powers of 2. 

Nonlinear phase time-reversed QMF filters were given more emphasis in this 

study. Theoretically these filters can be designed to remove aliasing, phase as 

well as amplitude distortion. The original study, had developed the conditions for 

noncausal time-reversed QMF filters whereas in this study we examined the case 

with causal filters. Based on the results we obtained, we then developed a filter 

design procedure which uses the McClellan-Parks algorithm to design optimum 

weighted Chebyshev approximations. The performance charts of the designed filters 

were presented in the previous chapter and can be used to help the designer to 

choose the appropriate values for the filter design parameters. Also, a number of 

filter design examples are presented in Appendix A. 



Nonlinear phase time-reversed QMF filters, when implemented with single pre- 

cision arithmetic, introduce amplitude distortion which is negligible. The fact that 

amplitude distortion is not a design parameter makes the design of these filters 

easier than the design of linear phase QMF filter where amplitude distortion is con- 

sidered an important design parameter. Also, time-reversed filters can be used in 

non-symmetric tree-structures without any need for adding compensation filters. 

The main disad~antage of time-reversed QMF filters over linear phase QMF 

filters is the implementation complexity. It appears that with time-reversed QMF 

more memory to store the values of the filter coefficients and more number of 

computations are required than with linear phase QMF filters. 

The performance of time-reversed QMF filters is still to be examined and com- 

pared with the performance of other filters in the presence of individual channel 

coders. There are some questions as to whether coding algorithms are sensitive to 

the nonlinear phase of the analysis filter bank. This is left for future research. 



Appendix A Filter Design Examples 



Example 1 

Specifications: N = 16, Wt = 0 . 3 2 ~  (w, = 0 . 3 4 ~ ) ,  A, = 40.3 dB 

Normal i zed Frequency Hz 

Fig. 1.a Transformation Ul ( w )  

Normal i z e d  Frequency Hz 

Fig. 1.b Cascade filter response Fo (w )  



Norma\ ;zed Frequency Hz 

Fig. 1 .c Lowpass filter response Ho(w)  

0 

0 

-2 o 1 e 

REAL 

Fig. 1.d Location of zeros for Fo(z) 



I Filter Coefficients ho(n) I 



Example 2 

Specifications: N = 20, Wt = 0 . 2 6 ~  (w, = 0 . 3 7 ~ ) ,  A, = 40.7 dB 

Normal i zed Frequency Hz 

Fig. 2.a Transformation Ul (w )  

-m . 

-40 . 

- 6 0 .  

-80.  

0 0.1 0.2 0.3 0.4 

Norma\ i zed Frequency Hz 

Fig. 2.b Cascade filter response Fo ( w )  



Normal ized Frequency Hz 

Fig. 2.c Lowpass filter response Ho(w) 

REAL 

Fig. 2.d Location of zeros for Fo(z) 





Example 3 

Specifications: N = 28, Wt = 0.20~ (w, = 0.40?r), A, = 43.5 dB 

Normal i zed Frequency Hz 

Fig. 3.b Cascade filter response Fo (w)  



Normal ized Frequency Hz 

Fig. 3.c Lowpass filter response HO(w) 

REAL 

Fig. 3.d Location of zeros for Fo(z) 





Example 4 

Specifications: N = 32, Wt = 0 . 1 8 ~  (w, = 0 . 4 1 ~ ) ,  A, = 44.6 dB 

Normal i z e d  Frequency Hz 

- 
0 

-W 

-40 

-60 

-80 

Fig. 4.b Cascade filter response Fo(w) 

. 

. 

. 

o 0.1 o.e 0.3 0.4 0.5 

Normal i zed Frequency Hz 

-- Fig. 4.a Transformation Ul (w) 



Normal ized Frequency Hz 

Fig. 4.c Lowpass filter response Ho(w)  

REAL 

Fig. 4.d Location of zeros for Fo ( z )  



1 Filter Coefficients hn(n) 



Example 5 

Specifications: N = 36, Wt = 0 . 1 8 ~  (w,  = 0.417r), A, = 49.9 dB 

0 0.1 0.P 0.3 0.4 0.5 

Norma\ i zed Frequency Hz 

Normal ized Frequency Hz 

Fig. 5.b Cascade filter response Fo(w) 



Normal ized Frequency Hz 

Fig. 5.c Lowpass filter response Ho(w) 

I I 
-2 -1  0 1 2 

REAL 

Fig. 5.d Location of zeros for Fo(z)  



I Filter Coefficients hn(n) 



Example 6 

Specifications: N = 40 ,  Wt = 0.16~ (w ,  = 0 .42n) ,  A, = 49.3 d B  

Norma\ ized Frequency Hz 

Fig. 6.a Transformation Ul ( w )  

Normal ized Frequency Hz 

Fig. 6.b Cascade filter response Fo ( w )  



Normal i zed Frequency Hz 

Fig. 6.c Lowpass filter response Ho(w) 

Fig. 6.d Location of zeros for Fo(z) 



Filter Coefficients ho(n) 

ho(0) 

ho(l) 

ho(2) 

h0(3) 

h0(4) 

ho(5) 

h0(6) 

h0(7) 

ho(8) 

ho(9) 

h0(l0) 

hO(ll) 

hn(12) 

ho (14) 

h0(15) 

h0(16) 

ho(17) 

h0(18) 

ho(19) 

h0(20) 

h0(21) 

h0(22) 

h0(23) 

h0(24) 

h0(25) 

ho(26) 

-2.3086526 X 

9.1815069 X 

-1.2978541 x 

5.9548996 X 

1.7176449 X 

-6.4571793 x 

-2.6061193 x 

1.7619275 x 
3.6916335 X 

-3.5569607 x lo-' 

-4.8833349 X 

6.1748615 X 

6.1004341 x 

-7.2698213 X 

1.4421455 X loA2 

8.3442479 x 

-2.0303947 X 

-9.3354935 X 

2.7534293 x 

1.0367244 x 

-3.6283557 x 
-1.1759273 x 

4.6801248 x 
1.4179933 X 

-5.9462474 X 

-1.8948330 x 

ho(28) 

hO(2g) 

h0(30) 

h0(31) 

h0(32) 

ho(33) 

h0(34) 

ho (35) 

ho(36) 

h0(37) 

ho(38) 

ho(39) 

2.8699825 X 

-9.3164397 X 

-4.8960860 x lov2 

1.1370748 X 10-I 

9.2139292 X 

-1.2768251 x lo-' 
-1.8765785 x 10-I 

8.1374077 x 
3.9149793 X lo-' 

4.2607965 X lo-' 

2.3448949 X 10-I 

5.8961397 X 



Example 7 

Specifications: N = 44, Wt = 0 . 1 2 ~  (w, = 0.447r), A, = 41.2 dB 

Normal i zed Frequency Hz 

Fig. 7.a Transformation Ul (w )  

Normal i z e d  Frequency Hz 

Fig. 7.b Cascade filter response Fo (w) 



Normal i z e d  Frequency Hz 

Fig. 7.c Lowpass filter response Ho(w) 

REAL 

Fig. 7.d Location of zeros for Fo(z) 



Filter Coefficients hn(n) 



Example 8 

Specifications: N = 48, Wt = 0.10~ (w, = 0.45~1, A, = 37.8 dB 

Normal i zed Frequency Hz 

Fig. 8.a Transformation Ul (w)  

Normal i z e d  Frequency Hz 

Fig. 8.b Cascade filter response Fo ( w )  



Norma\ i zed Frequency Hz 

Fig. 8.c Lowpass filter response Ho(w) 

REAL 

Fig. 8.d Location of zeros for Fo(z)  



I Filter Coefficients hn(n) 



Example 9 

Specifications: N = 24, Wt = 0 . 2 4 ~  (w, = 0 . 3 8 ~ ) ,  A, -- 45.5 dB 

Normal i z e d  Frequency Hz 

Fig. 9.a Transformation U2 ( w )  

Normal ized Frequency Hz 

Fin. 9.b Cascade filter response F n f w )  



Normal ized Frequency Hz 

Fig. 9.c Lowpass filter response Ho(w) 

REAL 

Fig. 9.d Location of zeros for Fo(z)  





Example 10 

Specifications: N = 32, Wt = 0 . 2 0 ~  (w, = 0.407r), A, > 47.3 dB, 
W 

W(w)  = lO(1- -) + 1 
w c 

Norma\ ized Frequency Hz 

Fig. 10.a Transformation Ul (w) 

Norma\ i zed Frequency Hz 

Fig. 10.b Cascade filter response Fo(w) 



Norma\ ;zed Frequency Hz 

Fig. 10.c Lowpass filter response Ho(w) 

REAL 

Fig. 10.d Location of zeros for Fo(z) 





Example 11 

Specifications: N = 32, Wt = 0 . 2 0 ~  (wc = 0 . 4 0 ~ ) ,  A, > 46.5 dB, 
W 

W ( W )  = SO(1- -) + 1  
Wc 

L 
o 0.1 o.e 0.3 0.4 

Normal i zed  Frequency Hz 

Fig. 1l.a Transformation Ul (w )  

Norma\ i zed  Frequency Hz 

Fig. 1l.b Cascade filter response Fo(w)  



Normal ized Frequency Hz 

Fig. 1l.c Lowpass filter response Ho(w) 

REAL 

Fig. 1l.d Location of zeros for Fo(z) 



Filter Coefficients ho(n) 

ho(0) 

ho( l )  

- -1.5312975 x lo-* 
6.6978350 X 

ho(16) 

ho(17) 

2.2880311 X 

-4.2931926 X 
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