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Abstract 

This thesis presents a new technique for improving the performance of the timing 

recovery scheme for baseband synchronous pulse amplitude modulation (PAM) data 

signals.   his technique uses adaptive prefiltering to adaptively shape the pulses 

entering the timing path. A review of the timing recovery problem and the timing 

jitter of the PAM system is first introduced. Then, a discussion of the properties 

of the timing wave, including the effects of the prefilter, is presented. The rest of 

the thesis describes the design, implementation, and performance of the adaptive 

prefilter with tap spacing of one-quarter of the symbol time interval T. An analysis 

of an adaptive algorithm for adjusting the tap weights of a tapped-delay line to 

minimize the mean square distortion is given. The intention is to see the effects 

of the number of taps and the step size on the speed of convergence. Attention is 

focused on the convergence of the me& coefficient vector. The thesis concludes with 

an implementation for a computer simulation examining the technique. Comparison 

with results obtained from some specific examples shows that the convergence of the 

mean coefficient vector also leads to fast convergence of the output mean square error. 



Cette thkse prksente une nouvelle technique pour amkliorer la performance de 

la mkthode de rkcupkration du rythme appliquke aux signaux de donnkes de bande 

de base synchrones obtenus par modulation d'impulsions en amplitude (MIA). Cette 

technique utilise un prkfiltrage afin de fqconner, adaptativement, les impulsions ap- 

paraissant B l'entrke du circuit de synchronisation. Une revision du problkme de la 

rkcupkration du rythme et de la fluctuation de la synchronisation du systitme de MIA 

sera tout d7abord prksentke. Ensuite, une discussion des proprietks de la sdquence 

de rkglage, incluant les effets du prkfiltre est donnke. Le reste de la thkse ddcrit le 

design, la rkalisation et le rendement d'un prkfiltre adaptatif dont l'espacement des 

prises est un sous-multiple du temps d'intervalle T des symboles. L'analyse d'un al- 

gorithme adaptatif pour le rkglage de la pondbration des prises sur une ligne de retard 

B prises, afin de minimiser la moyenne du carrd de la distorsion est incluse. L7effet 

du nombre de prises ainsi que celui de la dimension de l'kchelon sur la vitesse de 

convergence est aussi analyst!. L7attention sera portke sur la convergence du vecteur 

de coefficients moyens. La thkse conclue par une simulation sur ordinateur de la tech- 

nique dkcrite. Les resultats obtenus avec des exemples spkcifiques, dkmontrent que la 

convergence du vecteur de coefficients moyens, est accompagnke d'une convergence 

rapide de 17erreur du signal de sortie. 
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Chapter I 

Introduction 

1.1. Review of the timing recovery problem 

Synchronization is the process of aligning the time scales between two or more 

periodic processes that are occurring a t  spatially separated points. This is one of 

the most critical receiver functions in synchronous communication systems. The re- 

ceiver synchronization problem is to obtain accurate timing information indicating 

the optimal sampling instants of the received data signal. This is called clock synchro- 

nization, timing recovery or clock recovery. In early systems, the timing information 

was transmitted on a separate channel or by means of a discrete spectral line at an 

integer multiple of the clock frequency imposed on the data signal itself. However, 

these systems had many disadvantages, including inefficient utilization of bandwidth 

and poor jitter performance. 

In digital communication systems that are efficient in power requirements and 

bandwidth occupancy, the timing information must be derived from the data sig- 

nal itself and based on some meaningful optimization criterion which determines the 

steady-state location of the timirig instants. For this self-tirned mode of operation, 

the received data signal is fed into a tinling circuit which produces a "timing wave" 

I 



which ideally has some periodic attribute, such as uniformly spaced zero crossings. 

Bandwidth- and power-efficient signal design usually dictates that any discrete com- 

ponent of the clock be suppressed and transmitted power be devoted exclusively to 

data. In this case, the timing circuit must regenerate a clock from a signal that does 

not contain timing information in explicit form. Nonlinear devices are necessary to 

regenerate a discrete reference from a signal in which the clock has been suppressed. 

For binary or multilevel pulse amplitude modulation (PAM) data signals, several 

timing recovery methods are known [I-81. A broad classification into analog and 

digital schemes can be made. 

Some analog schemes use the threshold crossings (at zero if the signal is two-level, 

or halfway between the reference levels if the signal is multilevel) or the derivative 

of the received baseband data signal to correct or update the phase of the receiver 

clock [3-51. These schemes can be used with a variety of algorithms within the 

control loop and different parameters can be used during the initial training mode 

and during the subsequent tracking mode. These types of systems operate on the 

baseband signal. Other analog systems use pre-filtering and nonlinear processing of 

the received waveform to generate a spectral line a t  the clock frequency (or an integer 

multiple thereof)' [6-91. An advantage of these systems is their ability to work with 

either the baseband or the passband signal. However, the performance of analog 

systems depends significantly on the availability of signal bandwidth in excess of the 

Nyquist bandwidth (i.e., one half the frequency corresponding to the bit rate) a t  the 

receiver. 

The current trend in timing recovery systems is towards a fully digital imple- 

mentation using the presently available medium- and large-scale integration (MSL and 



LSI) technology [lo].  In such a system, the received data signal is sampled by the 

clock signal, A/D converted and processed. Then timing recovery is usually achieved 

with a feedback configuration. 

Previous work has indicated that the main cause of the fluctuation in the timing 

wave is the random nature of the data sequence [6 ,8 ,  14, 151. Control of this random- 

ness by adaptively controlling the pulse shape is the solution proposed in this thesis. 

Originally, prefiltering the data sequence (with a fixed prefilter) before the nonlinear 

device was proposed by Takasaki [8]. Franks and Bubrouski [9] give a condition on 

the overall response of this prefilter for jitter-free timing recovery. 

In the following work, this overall response is used to design an adaptive fract- 

ionally-spaced prefilter. Some of the analyses of fractionally-spaced equalizers [Unger- 

boeck, [18], Gitlin and Weinstein [19]] are readily adaptable to the case of a frac- 

tionally-spaced adaptive prefilter. The prefilter problem differs from the equalizer 

problem in that it requires normalization of the tap-gain coefficients. This leads to 

a new adaptive algorithm. Simulation results are presented which indicate that the 

adaptive prefilter leads to improvements in the timing wave regularity. 

The added complexity of an adaptive prefilter can be justified by the better 

timing recovery performance, and with digital signal processing hardware costs con- 

tinually decreasing, the cost of a hardware implementation will be minimal. 

1.2. General outline of the thesis 

In chapter 2 of this thesis, a review of the PAM tirning recovery problerri is 

presented in Section 2.1. Investigatiori of the sources of timing jitter in the timing 

wave makes up Section 2.2. 



In chapter 3, we study the data pulse shape for a baseband PAM signal in Section 

3.1. The statistical properties of the lowest-order momerits of the cyclostationary 

timing wave are examined: the mean timing wave in Section 3.2 and the variance 

in Section3.3. In Section 3.4 an 'expression for rms timing jitter is obtained. From 

this expression the effects of pulse shape, bandwidth and mistuning of the circuit are 

deduced. The result of the investigation, which is a condition on the prefilter and the 

passband filter for complete elimination of timing jitter, is presented in Section 3.5. 

Chapters 4 and 5 contain the details of the design and implementation of the 

prefilter as an adaptive equalizer. Starting from the properties of its characteristics in 

Section 4.1, The implementation of the adaptive prefilter by a fractional tap-spaced 

equalizer is covered in Section 4.2. Minimizing the mean-squared error using an 

iterative algorithm for computing the tap gain coefficients is presented in chapter 5. 

The least mean square algorithm, and its convergence properties are studied, as an 

approximation for examining the convergence rate of the MSE, in Sections 5.2 and 

5.3, respectively. 

In chapter 6, the results of the computer simulations are presented, with a com- 

parison between a data-quality telephone channel and a channel with severe inter- 

symbol interference for different values of the step size. 



Chapter 2 

Timing jitter 
in PAM timing recovery 

2.1. PAM timing recovery 

A simplified model of a baseband PAM data transmission system, with an overall 

impulse response g ( t ) ,  is shown in Figure 2.1. The  received PAM signal can be 

described as 

where {ak) is the discrete-valued data sequence and n ( t )  is the additive noise process. 

For the most part in the signal, the data sequence will be assumed to consist of 

independent, identically distributed zero mean values. In many data transmission 

systems scramblers are used to obtain an approximately independent sequence. As 

will be indicated later, the noise tern n( t )  can often be neglected in the timing path. 

Now, the receiver synchronization problem is to find t.he correct sampling in- 

stants for extracting the data sequence. Assuming a nornlalization of g ( 0 )  -- 1: and 

that g ( t )  is defined so that the  best sampling instants are at  t = iT, i -- 0, f l , 5 2 ,  . . . , 





The first term in the right-hand side of this equation is the desired value. The 

second and third terms represent intersymbol interference and noise, respectively. 

The objective is to recover a close replica of the message sequence {a,)  in terms of 

the sequence (2 ; ) .  In the noise-free case, the difference between a; and tii is due 

to intersymbol interference, which can be minimized by proper shaping of the data 

pulse g(t). With perfect ti~ning, the intersymbol interference is 

and this term can be made to vanish for pulses satisfying the Nyquist criterion, i.e., 

g(iT) = 0 for i # 0. For band-limited Nyquist pulses, the intersymbol interference 

will not be zero for imperfect timing, and if the bandwidth is not close to the Nyquist 

bandwidth (1/(2T)), the intersymbol interference can be quite severe even when the 

timing error is small. 

In some cases, the timing circuit is simply a narrow-band filter tuned to a har- 

monic of the pulse repetition frequency ( l /T ) .  This scheme works in situations where 

the PAM signal has discrete spectral components. Assuming a random data sequence 

modulating the signal, the existence of discrete spectral components requires both 

that the data sequence have a nonzero mean value and that the Fourier transform of 

the data pulse not vanish at some multiple of the pulse repetition frequency ill]. In 

the interest of meeting power and bandwidth limitations, it is desirable to design a 
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system where neither of these conditions holds. It has been recognized, however, that  

the same timing recovery circuit will work if a nonlinear element, such a a square 

law device or a full wave rectifier is inserted before the narrow-band filter [7-91. A 

timing circuit involving a square law device followed by a narrow-band filter will give 

satisfactory performance even when the PAM signal is band limited to less than the 

pulse repetition frequency. 

This widely used timing recovery system is illustrated in Figure 2.2 [12]. The 

incoming pulse train u(t) first undergoes a nonlinear processing (NLC), which intro- 

duces a spectral line at  the pulse rate or a multiple thereof. The NLC is assumed to 

be memoryless, with an input-output relationship specified by a characteristic f (.), 

so that its output is e(t) = f({x(t))). Then, the signal is filtered by a narrow-band 

resonant tank circuit, tuned as close as possible to the pulse rate, resulting in the 

sinusoidal timing wave. Narrow pulses are finally generated at  the negative-going 

zero crossing of the timing wave. In modern receivers, narrow-band resonant circuits 

are often implernerited using phase-locked loop circuits. 

2.2. Generation of timing jitter 

In the ideal situation the timing wave would consist of regularly spaced pulses, as 

mentioned before. However, this never occurs exactly because a constant-amplitude, 

correctArequency timing wave is not realizable in practice. The timing wave has 

ral~dom niodulations in both amplitude arid phase and consequently pulses generated 

at. the zero-crossings contain fluctuations which represent an error, time jitter, i n  the 

extracted timing information. 



Figure 2.2. A general timing extraction model 1121 
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Fluctuations can arise from additive or multiplicative disturbances in the channel 

or from self-noise, which is called systematic jitter. The main causes of this noise 

are the random nature of the data itself and of the action of the nonlinear device. 

Another name for this kind of disturbance is pattern-dependent jitter, because the 

fluctuations depend on the data sequence. 

Jitter investigations have shown that jitter due to random noise is not a serious 

problem in practice and clearly indicate that the predominant jitter is systematic 

and is caused by the signal pulse pattern [7-8, 13-14]. The sources of self-noise in 

the timing wave are (I)  pulse shape and (2) imperfections of a timing circuit, i.e., 

(a) amplitude to phase conversion and (b) mistuning of a timing circuit. These are 

discussed seperately below. 

2.2.1. Pulse shape 

As pointed out by J. M. Manley [14], the spectrum of the pulse train contributes 

very little timing noise itself if the pulses are narrow. This spectrum consists of 

discrete components at  harmonics of the pulse rate and broadband noise which is 

divided into small, evenly spaced bands. Taking these side frequencies in pairs about , 

the pulse rate, we may think of the pulse train in the vicinity of the pulse rate 

as a carrier wave, amplitude modulated by a number of small components. This 

amplitude modulation at  the output of the pass-band filter may cause further phase 

modulation. Here the pulse train itself is now a source of timing jitter components, 

having a spectrum with nonzero value at zero frequency. 

The dependence of static pattern jitter on pulse overlaps has been investigated 

in [8]. It was shown that the complex weight of the timing wave Z2(fo)  can be 

10 



expressed as follows [s, Eqs. ( 5 ) - ( 1 2 ) ] :  

where 

and where 

fo :  pulse repetition frequency 

M: number of time slots in a pattern period 

a i :  amplitude of the pulse in the ith time slot 

H ( f ) :  spectrum of an isolated pulse 

W ( f ) :  spectrum of a data sequence of impulses 

('2): indicates the use of square-law nonlinearity 

The amplitude and phase of the timing wave are given by l ~ ( ~ ) ( f ~ ) l  and angle 

1 z ( ~ ) (  f o )  1 ,  respectively. The function I w ( f )  l 2  is called the "pattern function" ; and 

H (  fo, f ) ,  the "Gaveform function". This nomenclature is med because they depend 

only on pulse patterns and pulse waveforms, respectively. The fact that the inner 

product of these two functions is expressed by the complex timing wave function 

x(')( f , , ) ,  together with the fact that the pattern function is a non-negative real 

function, make timing jitter analyses simpler than they might otherwise be. Let us 



confine our attention to ~ ( f o ,  f ) .  The relation between the spectrum of a pulse 

waveform and its waveform function can be interpreted as illustrated in Figure 2.3. 

As seen from the Figure and Equation (2.5), a waveform function is constant when 

the function 

satisfies Nyquist's first criterion. For instance, @(f,  fo) is constant for an ideal low- 

pass function 

1 I ~ I  r fo 
0 otherwise 

In this case pulse overlaps have no influence on the timing wave. The amplitude of 

the waveform function, however, need not be constant. On the other hand, the angle 

of the waveform function must be constant, since otherwise the phase of the timing 

wave fluctuates with the variation of digital patterns. One can easily verify this by 

using the fact that a symmetrical waveform makes the angle of ~ ( f ~ ,  f )  constant. It 

is seen from Equation (2.3) that the worst jitter case corresponds to the maximum 

phase difference in H (fo , f )  . 

2.2.2. Imperfections of a timing circuit 

a) Amplitude to phase conversion 

Amplitude to phase conversion occurs in detecting zero crossings of the timing 

wave in order to form spikes for ideal retiming. If the threshold is not exactly at 

the zero level of the timing wave, a phase shift will be introduced. This depends on 

the amplitude of the timing wave, which varies with the density of the pattern. The 

amplitude variation chiefly depends on the use of coding schemes such as contrained 

bipolar or PST [8]. Pulse overlaps, however, often exacerbate the amplitude variation. 



Figure 2.3. An interpretation of the waveform function [8] 
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The magnitude of a timing wave can be represented as 

We want to minimize the variation ratio 

max { I  Wk I cos ek) 
R = k 

min { 1 Wl I cos B e )  
e 

Since the optimum waveform functions that reduce the amplitude variation ratio R 

are sometimes not very suitable for pulse detection, we must use prefiltering in a 

timing path which can properly shape the amplitude-frequency characteristics of a 

waveform function. 

b) Mistuning of a timing circuit 

The tuned circuit which selects the pulse rate fundamental from the spectrum 

of the incoming signal to provide a.timing wave also admits some of the self-noise 

side frequencies, which are still symmetrical if the tuned circuit is centered exactly 

on the pulse rate. When it is detuned from the pulse rate, the side-frequency pairs 

in the response are no longer symmetrical. The asymmetry in amplitude, phase, or 

both, is equivalent to phase modulation of the timing wave. But the most important 

characteristic of the spectra of this kind of timing noise, caused by mistuning only, 

is that there is no energy at zero frequency [14], which means this source of jitter is 

not serious compared to the other sources. 



Chapter 3 

Optimizing pulse shaping 

for a PAM timing recovery scheme 

3.1. Introduction 

The timing circuit under consideration is shown in Figure 3.1. The received 

PAM signal is subjected to additional filtering by the prefilter in the timing path 

(as explained in Section 2.3.2). The individual da ta  pulse shape a t  the input to the 

square-law device is denoted by g ( t ) .  The model for the baseband PAM signal is 

repeated here for convenience, 

Before examining the circuit, it is helpful to ask what properties the signal 

~ ( t )  must possess so that operations on u ( t )  to produce a good estimate of the 

sampling instants. A general answer to this question lies in the cyclostationary 

nature of the u ( t )  process. A cyclostationary process has statistical moments which 

are periodic in time rather than constant as in the case of stationary processes. To 

a large extent, synchronizatio~l capability can be characterized by the lowest-order 

moments of the process, such as the mean and autocorrelation. The u ( t )  process 
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is said to be cyclostationary in the wide sense if E [u( t ) ]  and Ruu(t  + ~ , t )  are both 

periodic functions of t. A process modeled by Equation (3.1) is cyclostationary with 

period of T [15]. 

We assume that {ak) is a zero-mean stationary sequence with independent el- 
\ 

ements. The resulting PAM signal is a zero-mean cyclostationary process, although 

there may not be any periodic components present. 

3.2. Mean timing wave 

The square of the PAM signal does, however, possess a periodic mean value [9] 

where 

It is convenient to express the periodic mean function in terms of its Fourier 

series. Using the Poisson Sum Formula [ll], 

where 

For high bandwidth efficiency, we are often concerned with data pulses whose band- 

width is at most equal to twice the Nyquist. bandwidth. Then lG( f )  i = 0 for I f  \ > LIT 

and there are only three nonzero terms (! = 0, 5 1 )  in Equation (3.3).  



Then, 

The band-pass filter H ( f )  (Figure 3.1) is tuned to the symbol rate, 1 / T  18, 15-16] 

with band-limiting condition 

H (&) = o  for , l ,  # 1 

and with the assumption that the data sequence is stationary independent and has 
- n 

unit variance and zero mean, i.e., a2 = 1 and = R,,(m) = 0 for m # 0. 

Then, the mean timing wave is a sinusoid with a phase of 4 or - 2 a ~ / T ,  for a 

real G(f) ,  i.e., 

where - 

n 
z ( t )  = the timing wave 

We see that the zero-crossings of the mean timing wave are at a fixed time offset 

(T/4) relative to the desired sampling instants. 

18 



3.3. Variance of timing wave 

The actual zero crossings of z ( t )  fluctuate about the desired sampling instants 

because the timing wave depends on the actual realization of the entire data se- 

quence, so diff'erent zero crossings result For different data sequences. To evaluate the 

statistical nature of this jitter, we need to obtain the variance of the timing wave as 

given by Equation (3.7) [Franks, 91. The details of the derivations are carried out in 

Appendix A. 
00 

Var ~ ( t )  = Vr exp 
r=-00 

where 

where 

Finally, we can restrict the bands for G(f )  and H ( f )  in order to simplify the 

evaluation of the V,. These are reasonable assumptions for bandwidth-efficient sys- 

tems. 

3.3.1. The band limiting condit,ion on the band-pass filter H (  f )  



This condition limits the bandwidth of H( f )  to 1/T (centered at l / T ) .  

From Equation (3.7c), 

Then, 

We can see from Figure 3.2 that the condition for H ( f )  causes the Fourier 

coefficients V,  in Equation (3.7) to vanish except for r = 0 and f 2. This means 

that Var z ( t )  is simply a constant plus a sinusoidal term and that only two Fourier 

coefficients need to be evaluated. 

3.3.2. The band limiting condition on overall response G(f)  

From Equation (3.76), 

But since G( f )  is real and symmetrical, 





From the results in 3.3.1, we need to calculate A ( f )  and the Fourier coefficients 

V,  for r = 0, 1t2 only. 

(1) For r = 0 

A(r/T) will vanish except for I = 0 and A 1  because of the term G($ - u - q) x 

G(' - u - q) in Equation 3.12. For the particular case of (+I,  - 1) binary data, T 
- 
a4 = .R; = 1 and under conditions (3.8) and (3.11), we have 

00 00 .. 

(3.15) 
-00 

Then, 

(2) For r = f 2 



From Equation (3.11), the bandwidth of G( f) = 0 for (f 1 > 1/T. Then from the 

terms G ( 4  - q)  G(q) we can see that t = 0, f 1 will give a response, but from the 

terms G (8 - v - q )  G (v + q - )) we see that A(2/T) will vanish except for 1 = 1, 

so then 

From Equation (3 .6 ) ,  

which leads to 

Then, 

But from Equation (3.2), 



and 
00 2 

Po (; - f )  = /-- G(l,)G (T - f - Y )  d l ,  

Then 

and then 

Now we can rewrite the variance of the time wave (Equation (3.7)) in the form 

From Equations (3.16) and (3.20), we can see that the variance coefficients are 

constants, depending on G(  f )  and H( f ) ,  with Vo 2 V2 > 0. The cyclostationary 

nature of the timing wave is apparent from this expression. Letting H(1IT)  = 1, the 

mean timing wave in Equation (3.6) will be independent of the bandwidth of H(f )  

but as we can see from the expression for the variance, as the bandwidth of H(f)  

approaches zero, the value of V2 approaches V1. Therefore, there is a considerable 

time variation in the variance of z ( t ) .  Note that the minimum variance occurs just 

at the instant of the mean zero crossings, hence the Huctuations in zero crossings are 

much less than would be expected from a consideration of the average variation of the 

timing wave over a symbol period. This again points out the error in disregarding the 
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cyclostationary nature of the timing wave process as, for example, in using the power 

spectral density of the squarer output to analyze the jitter phenomenon. The mean 

timing wave can be regarded as a kind of discriminator characteristic or S-curve for 

measuring the parameter 9.  For the band-limited case we are discussing here, this 

S-curve is just a sinusoid, with a zero crossing at  the true value of the parameter. 

Discrimination is enhanced by increasing the slope at the zero crossing, which means 

less sensitivity to noise perturbation. As this slope is proportional to U 1 ,  we can 

see how the shape of the data pulse g ( t )  affects timing recovery. From Equation 

(3.6) we see that the value of U 1  depends on the amount of overlap of the functions 

G ( f )  and G ($ - I ) ,  and hence it depends on the amount by which the bandwidth 

- of G(f) exceeds the 1/2T Nyquist bandwidth. With no excess bandwidth, U1 = 0 

and this method of timing recovery fails. The situation improves rapidly as the 

excess bandwidth factor increases from 0 to 100 percent. With very large increases 

in bandwidth there are more harmonic components in the mean timing wave, and its 

zero-crossing slope can be further increased without increasing signal level by proper 

phasing of these components. 

3.4. The rms timing deviations 

Calculation of the statistical properties of the actual zero crossings of the timing 

wave is difficult. A useful approximation can be obtained by locating the zero crossing 

by linear interpolation using the mean slope at the mean zero crossing. 

A typical realization of the timing wave process appears as a nearly sinusoidal 

waveform with slowly varying amplitude and small fluctuations in phase-shift. The 

mean-squared value of the timing wave is periodic in t and will dip to a minimum 



value in the vicinity of the zero crossings of z(t) as indicated in Figure 3.3. This 

minimum value of E[z"t)] is an effective indication of the amount of fluctuation in 

the position At of zero crossings. When this quantity is very small relative to the 

total power in the timing wave, then it is clear that zero crossings will be tightly 

clustered about the mean zero crossing to .  The rms deviations from the to relative 

to the pulse interval T can be expressed by an approximate formula involving only 

the first and second moments of z(t) 191. 

where to is the mean zero crossing given approximately by E[z(to)]  = 0. 

Using Equation (3.6) we can determine that 

where n is any odd integer. 

So, the expression for rms relative time jitter, Equation (3.22), can be rewritten 

in terms of the Fourier coefficients for the mean and variance of the timing wave 

- 1 

($? r[,,s - m {V0 - 2 1 v2 1 cos (0 - 24)) 

where 0 and 4 are the phase angles for V.t and U1 respectively. For 0 # 24 the 

maxi~nurn variance does not occur at to, but a t  the point t l  given by 



Figure 3.3. Variation in the mean square value of the timing wave process I<)] 

27 



If the relative time difference between t  1  and t o  is small, we could take advantage 

of the smaller variance by implementing an device which observes axis-crossings when 

the axis is set at a level difference from zero. Hence, if we observe crossings of the 

axis E [ z ( t l ) ] ,  then the rms jitter is characterized by the smaller value 

1 (g) =- {Vo - 2 1 ~ 2 1 ) ~ ' ~  

rms 4~1'11 

3.5. Prefiltering to minimize jitter 

A careful examination of Equations (3.8) and (3.11) indicates that certain sym- 

metries in G(f)  and H ( f )  will tend to reduce jitter. In particular, it is seen that if 

G(f)  has even symmetry about 1 / ( 2 T )  and is band limited to the interval 1 / ( 4 T )  < 

( f  1 < 3 / ( 4 T ) ,  and if H ( f )  also has even symmetry about 1/T, then Var z ( t )  van- 

ishes and we have error-free timing recovery. This suggests that bandwidths greater 

than 50 percent in excess of the Nyquist bandwidth are unnecessary. The symmetry 

condition is approached by proper design of the prefilter in the timing path. 

In the usual situation the received PAM signal will be such that the prefilter will 

be required to emphasize signal components in the region above 1 / ( 2 T )  and attenuate 

components below 1 / ( 2 T ) .  This operation has the additional advantage of rejecting 

low-frequency additive noise which would otherwise enter the timing path. 

The Fact that all zero crossings occur at  the same point under the symmetry con- 

ditions on G( f )  and H ( f )  suggests a certain independence of the statistical properties 

of the data sequence. This is indeed true and it is shown that under the symmetry 

conditions stated, the timing wave z ( t )  has zero crossings at all odd rnultiples of T / 4  

for a n  arbitrary data sequence {ak). 



Chapter 4 

Analysis of a 
self-adjusting prefilter 

From the previous chapter, we see that a overall prefiltering response g(t) which 

is symmetric about 1/(2T) and band-limited to the interval 1/(4T) < I f  1 < 3/(4T) 

will tend to reduce jitter and that with certain symmetry in the band-pass filter 

H ( f ) ,  we can have jitter-free timing recovery. 

4.1. Properties of the prefilter characteristics 

Consider a baseband signal S ( f )  which is symmetric about zero, an, d band-limited 

to the interval -1/(4T) < I f  1 < 1/(4T) as shown in Figure 4.la. The band-pass signal 

g(t) is given by 

The Fourier transform G(f)  of g(f)  is symmetric and band-limited to the interval 

1/(4T) < I / (  < 3 / ( 4 T ) ,  as indicated in Figure 4.lb. It is clear that g(t) represents 

the desired overall impulse response (Figure 4. le) ,  which has a zero crossing at each 

odd multiple of T/2. 

Implementing an accurate analog filter to achieve these characteristics is not 

an easy job, especially because the timing wave is strongly dependent on the pulse 



i r  1 .  C;raphic:al r.cl)reser~ tation For the ove ra l l  response i r ~  t, hc time and 

f r equency  domains. 



shape and consequently on the (slowly time-varying) unknown channel characteris- 

tics. Adaptive equalizers can be used to compensate and track slow changes in such 

channels [17]. An analog realization of the equalizer is, usually, a low-pass filter (to 

band-limit the noise) followed by an equalizer and a sampler. IIowever, because of 

the delay-line structure, the sa~npler can just as well precede the equalizer. The 

equalizer then becomes a discrete time filter, which is usually to be preferred from an 

implementational point of view. So, a low-pass filter, a sampler, and a tapped-delay- 

line filter (with an automatically adjustable gain at  each tap) will be used instead of 

a time-invariant prefilter to improve performance. 

4.2. The adaptive prefilter implementation 

The performance of the timing circuit depends on a proper choice of 

1) the prefilter tap spacing and 

2) the gain coefficients of the equalizer. 

4.2.1. The prefilter tap spacing 

In this section, first we examine the sampling rate required for the input signal 

of the prefilter to ensure complete reconstruction of the signal without aliasing. 

In the previously mentioned liming recovery circuit several signal processing 

operations have taken place: the timing wave is prefiltered, squared and filtered 

again. For these operations analog signal processing has been used, thus the signal 

needed to derive timing information is contiriiio~~s in both time and arnplit utle. In this 

thesis, we are confronted with a somewhat different situation. The suggested adaptive 

prefilter is implemented with digital signal processing. The arialog timing recovery 
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scheme could then be "digitized" and would still perform in a functionally equivalent 

way. The timing wave is sampled a t  the input of the timing circuit to be available 

only at  discrete time intervals for further processing. To combat the effect of aliasing, 

the sampling interval is typically selected such that the bandwidth occupied by the 

timing wave satisfies the Nyquist condition, i.e., T, < 1/(2fn1,,) where T, is the 

sampling interval and f,,,, is the maximum frequency occupied by the signal. This 

maximum frequency in the output of the timing recovery circuit ( f2,,,,) is double the 

one in the input of this circuit (fll1,,,) because of the square law device. This means 

that band sampling will not permit an exact signal reconstruction by interpolation 

techniques, except in the case of a baseband signal which is strictly limited to  the 

Nyquist frequency (i.e., half the sampling rate), which is not the case here. Sampling 

must be performed at  a high enough rate to  allow a complete reconstruction. In 

general, the desired sampling interval can be represented as 

where 

and T is the band sampling interval, 

K, L are integers, 

which satisfies the Nyquist interval, i.e., 

and Tp also satisfies it, i.e., 



Note that the output impulse response of the prefilter, which ideally has zero-crossings 

at each odd multiple of T / 2 ,  can be represented by a transfer function with zero- 

crossings at  nT for n = 0, f 1, &2, . . . followed by a shifter with a constant group 

delay equal to T/2. This means that a sampling interval equal to T /3  is not adequate 

because it does not give samples at every T interval. However, choosing the sampling 

interval as 

will satisfy the Nyquist interval and will also give the desired samples, i.e., it is the 

suitable choice as a sampling interval. 

On the other hand, the time span between one tap of the prefilter equalizer and 

the next has to be equal to or a fractiori of the sampling intervals of the input signal. 

Otherwise, some of the signal information will be lost. So, if the delay line taps 

are spaced at  the interval Tp (the sampling interval) then the tap spacing is smaller 

than T (the band sampling interval). This type of equalizer is called a fractional 

tap spacing equalizer (FSE) [18, 191. The timing circuit and the  FSE prefilter are 

shown in Figures 4.2 and 4.3 respectively. One important property of this type of 

equalizer is the insensitivity of its performance to the choice of its input signal's 

sampler phase. This distinction between the conventional T-spaced and FSE for an 

appropriately (i.e., not exceeding t,wice the Nyquist bandwidth) band-limited input 

can be heuristically explained as follows. 

( i )  Symbol-rate sampling at the input to a T equalizer causes spectral overlap 

or aliasing. When the phases of the overlapping components match they add con- 





Figlire /1.3. Fractional tap  delay-line prefilter model 
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structively, when the phases are 180" apart they add destructively, which results in 

the cancellation or reduction of amplitude as shown in Figure 4.4. Variation in the 

sampler phase or timing instant corresponds to a variable slope being added to the 

signal spectrum. Thus, changes in the sampler phase strongly influence the effect of 

aliasing, i.e., they influence the amplitude and delay characteristics in the spectral 

overlap region of the sampled equalizer output. 

In contrast, there is no spectral overlap a t  the input to an FSE because the 

longer period (in the frequency domain) of its transfer function allows the equalizer 

to control the phases of the aliasing roll-off components independently of one another. 

(ii) The T-spacing equalizer cannot suppress noise a t  frequencies outside the 

Nyquist band, I f  1 5 1/(2T), so the burden of rejecting such noise components is 

placed entirely on the filters preceding the equalizer. The FSE, by virtue of its Sam- 

pling rate, can synthesize the best combination of the characteristics of an adaptive 

matched filter and a T-spaced equalizer, within the constraints of its length and de- 

lay. An FSE can effectively compensate for more severe delay distortion and deal 
' 

with amplitude distortion with less noise enhancement than a T-spaced equalizer. 

The cost of fractional tap spacing would then primarily be an L times as high 

analog/digi tal (AID)  conversion rate (Equation (4.2)),  L times as many memory 

stages for the equalizer delay line, and L I K  times as many multiplications for the 

same length of the equalizer delay line in terms of total delay. 

4.2.2. The tap gain coefficients of the equalizer 

The prefilter equalizer is shown in Figure 4.3, in which the spacing between the 
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Figure 4.4. Spectral overlap at the input t o  a T equalizer 



taps is T/4 .  The signal at its input is given by 

where 

{a,) is the sequence of data symbols transmitted 

h(t)  denotes the elementary pulse waveform 

rs is the constant time offset of the sampler with respect to the data source 

clock, and 

n( t )  represents stationary noise, characterized by the autocorrelation function 

For simplicity, the assumption is made that the noise is white over the entire 

frequency range of h ( t ) ,  with constant spectral power density No. Outside this range 

the noise is band-limited by the low-pass filter. 

Then, equalizer output 

is observed, where 2N $ 1  is the number of taps. 

According to Figure 4.3,  at  sampling instant kT + T,, the output signal of the 

equalizer is given by 



Let C : { c j ,  - N  < j < N) be the vector of the adjustable tap gains. The equal- 

izer output therewith becomes 

and 

If jjk is defined as the estimate of the desired value yk, and from the transfer 

function of the prefilter (Section 4.2.1), the desired value is equal to zero at  each time 

interval T. Then the mean square error (MSE) between the desired value and the 

estimated one is 

J = E /elZ = E lyX - ck12 = E / g k 2  (4.12) 

Using Equations (4.1) and (4.9) in (4.12) yields 

where 



In matrix notation, Equation (4.13) becomes 

E d k 1 2  = C ~ A C  

where C is a column vector of the 2 N  + 1 optimum tap coefficients and A is the 

(2N f I )  by (2N + 1) covariance matrix of input samples x(kT), - N  < k 5 N with 

elements given by 

Equation (4.14) represents the MSE as a function of the tap coefficients { c j ) .  

One approach to minimizing this function with respect to { c j )  is invoking the or- 

thogonality principle in the mean square estimation, selecting the coefficients { c j )  to 

render the error e k  orthogonal to the signal sequence {xk_e), for - N  < C 5 N, i.e., 

But, for this specific case, yk = 0, which means that we are projecting a null 

vector. Thus the orthogonality principle is not applicable. 

Before discussing the proper approach to minimizing the MSE, we have to study 

the covariance matrix A more closely. From Equation (4.3)) 



Applying this equation to  Equation (4.15), which represents the elements of the 

matrix A, yields 

By defining Raa(.) as the data source autocovariance function, and assuming 

that the data source is stationary with zero mean, we find that 

n 
Raa (P - r )  = E[apar]  

Defining 

n 
m = p - r  and n = k - r  

leads to 

For a white data source, white noise with powers a: and a: respectively, we get 



The A matrix has several important properties. First, even though it is sym- 

metric like the autocorrelation matrix for a T equalizer, it is unlike them in that its 

(i, j ) t h  element is not a function of i - j, i.e., it is not a Toeplitz matrix. 

From Equation (4.19), the A matrix has the form 

where w = 2N t 1. 

To explicitly see the non-Toeplitz nature of the A matrix we can rewrite Equation 

(4.19) in the frequency domain as 

and for systems with nonzero excess bandwidth the bracketed terms depend on i and 

j individually, rather than on i - j. 



Second, since the matrix is an autocorrelation matrix, it is positive semidefinite. 

In most but not all applications, it can be assumed that this matrix is positive 

definite, and hence nonsingular. Cases in which this is not true will be discussed in 

Section 4.4, but as long as it is true then the autocorrelation matrix has positive real 

eigenvalues. 

4.3. The resulting minimum mean square error (MMSE) 

The MSE is defined in Equation (4.14) as follows: 

This quadratic form is minimized with respect to { c j )  by the trivial solution 

{ c j )  = 0. Thus, a restriction C  # 0 must be imposed on the coefficients to prevent 

this situation from occurring. One way this can be done is to normalize the tap 

coefficients so that 

so as to avoid the trivial solution. Two different forms of this contraint lead to the 

same MMSE solution as demonstrated by the theorem given in Appendix B, which 

implies that [20] 
C ~ A C  

Minimizing ---- 
CTC 

for any C + 0 

is equivalent to 

Minimizing C ~ A C  subject to C ~ C  = 1 

From the previous section, the matrix A is a special case of a Hermctian matrix 

in a sense, as it is a real symmetric matrix. To minimize this quadratic form with A 
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as a Hermetian matrix (Equation (4.23)) we need to apply the theorem explained in 

Appendix C,  which proves that [20] 

min C ~ A C  
Xlnin = CTC 

for any C  # 0 

which is equivalent to 

This means that the resulting minimum mean square error is 

where is the minimum eigenvalue for the matrix A. Then, the optimum tap 

coefficients vector (Copt) is the eigenvector corresponding to this eigenvalue (Amin) .  

Note that, analytically, the normalized tap coefficients are preferable because 

they tend to preserve the signal's energy, which means that the output signal carries 

the same amount of energy as the input signal (at least for white inputs). So, we 

choose the normalization for the tap-spacing coefficients as a constraint. 

4.4. Uniqueness of solution for the fractionally-spaced prefilter as the 

noise vanishes 

Referring to Equation (4.19), the i j th  element of the channel correlation matrix 

can be written as 



As can be seen from this equation, the matrix A is the sum of two matrices. The 

channel-dependent component of A is always positive semidefinite. Since the other 

component, a21, is positive definite for nonzero a2, A will also be positive definite, 

and we can conclude that when there is noise present, the optimum tap setting is 

unique. Now, consider the situation as the noise becomes vanishingly small, i.e., A is 

positive semidefinite. This means that the matrix has one or more zero eigenvalues 

and, clearly, the corresponding eigenvector is not unique. In this case, from 

Equation (4.25), the resulting minimum mean square error is optimal because it is 

zero. But the corresponding solution for the optimal tap coefficient vector Copt is 

finite but not unique due to the eigenvectors. The optimum tap setting will be unique 

if, and only if, A is nonsingular. A sufficient condition for A to be nonsingular is 

the nonvanishing of the quadratic form C ~ A C ,  for any nonzero vector C ,  (which 

implies a non-zero mean square error). In the following discussion, which considers 

the quadratic form in detail, the work by Gitlin et. al. 1211 on T or T /2  spaced 

equalizers is extended to our case, a T / 4  spaced prefilter. We start by rewriting the 

quadratic form as 



C ~ A C  can vanish only if 

If we define the periodic Fourier transform 

then we can proceed further by noting that 

The right-hand side of Equation (4.30) is recognized as the sample, a t  t = CT, of 

a function whose transform, y,,,(w), is contained in the brackets. If Equation (4.30) 

is to be zero for every value of t ,  then it must be that the Fourier transform inside 

the integral vanishes cornpletely, i.e., 



In Figure 4.5, we show the situation when there is no excess bandwidth. Since the 

sum in Equation (4.31) reduces to one term, the only way for yeq(w) r 0 is for either 

h(w) or cT14(w) to be zero. Since this implies that cTI4(w) -- 0, which would violate 

the nonzero requirement on C ,  we must conclude that for this case, A is positive 

definite. A similar sketch for the less than 100 percent excess bandwidth case is 

shown in Figure 4.5b, which it is noted that only the k = 0, f 1 terms contribute to 

the sum. 

However, since in the non-rolloff region, Iwl 5 (1 - cr)~/T,  only the k = 0 

term influences the sum. For channels that do not vanish over the entire non-rolloff 

region, it is clear that for yeq(w) to vanish it is required that c ~ / ~ ( w )  vanish at  least 

over the entire non-rolloff region. Since cTI4(w) is a finite term Fourier series, it 

cannot vanish over an interval without vanishing everywhere, which in turn would 

again make C = 0. Note that if the channel vanished over a portion of the non-rolloff 

region, then since ye,(w) is a finite term Fourier series, its energy could not be totally 

concentrated in the region where there was no channel energy. Thus, the solution still 

would be unique. It is worth noting that in the extreme case of 100 percent excess 

bandwidth, y,,,(w) can vanish. For example, in Figure 4 . 5 ~  we sketch the situation 

for a constant h(w), and with cTI4(w) = COS(WT/~) it is apparent that Zeq(w) = 0. 

Thus for a finite-length fractional spaced prefilter with less than 100 percent excess 

bandwidth, we can conclude that even as the noise becomes vanishingly small, the A 

matrix is nonsingular and there is a unique optimum tap setting. 



Figure 4.5. Conditions for solution uniqueness for a fractionally-spaced prefilter 



Chapter 5 

An iterative algorithm 

for computing the tap gain coefficients 

The previous results indicate that solving for the optimal prefilter coefficients 

Copt involves calculating the eigenvector for the minimum eigenvalue of the 

autocovariance matrix A. Alternatively, an iterative procedure may be used to de- 

termine Copt. In the related equalizer problem, one of the most efficient methods 

is the use of a stochastic gradient (SG) algorithm. This adaptive algorithm is also 

sometimes called the LMS (least-mean-square) adaptive transversal filter. 

In the following section, an outline of the MMSE gradient algorit,hm will be 

reviewed. Although this algorithm is of little practical interest in itself, it will lead 

directly to the widely used stochastic gradient (SG) algorithm. Furthermore, an 

understanding of the properties of the gradient algorithm will be ve.ry helpful in 

understanding the SG algorithm. 

5.1. The MMSE gradient algorithm 

The approach in this algorithm is to define a sequence of coeficierit vectors which 

is guaranteed to converge to the optimum coefficient vector. As a starting point for 
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the derivation, one defines a vector {x,) as the tap-input vector whose elements 

consist of the (2N + 1) tap inputs of the filter: 

zn = [x(nT + Tp), . . . ,x(nT),  . . . , x ( n T  - Tp)] - N i n 5 N (5.1) 

x, is assumed to be a discrete time random process with a known autocorrelation 

matrix"' defined by Equation (4.19). 

The output mean square error (MSE) given by Equation (4.14) is a quadratic 

form in the coefficient vector which has a unique global minimum. The approach 

is to adjust the weights iteratively to minimize the MSE by descending along the 

performance surface towards the minimum. Since the algorithm is iterative in na- 

ture, a notation for the coefficient vector which reflects this is needed. So, call the 

j th iteration of the coefficient vector Cj, which corresponds to some point on the 

quadratic MSE surface in the (2N f 1)-dimensional space of coefficients. The gradi- 

ent (error) vector Gi , having the 2N + 1 gradient components - - , is then 

computed at this point on the MSE surface. Given the present coefficient vector Cir 

by subtracting off a term proportional to the error gradient, the resultant t a i  vector 

should be closer to C,,pt. This is because the gradient of the error is a vector in the 

direction of maximum increase of the error. Moving a short distance in the opposite 

(negative) direction to that of the gradient vector should bherefore reduce the error. 

On the other hand, moving too far in this direction might act,ually overshoot the 

pp - - 

* Although this is an urirealistic assu~nption, it is useful to examirie the solution 

for this case as a motmivation for the SG algorithrri which is orie~it~ed toward the case 

of unknown statistics. 
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minimum and result in instability. Thus succeeding values of the coefficient vector 

are obtained according to the relation [22] 

where A is a small adaptation constant or step size which controls the size of the 

change in Cj at each update. Referring back to Equations (4.9) and (4.12), we see 

that the gradient vector is 

where the vector Cj represents the set of coefficients at time j and e j  = -yj is the 

error signal at the j th  iteration. 

From Equation (4.14), the gradient vector can be expressed as 

Note that the division by two in the gradient vector is included to avoid a factor of 

two in the subsequent adaptation algorithm. 

The gradient algorithm is explicitly 



where 1 is the identity matrix. 

The basic difficulty in determining the optimum tap weights is the lack of knowl- 

edge of the gradient vector Gj ,  which depends on the covariance matrix A. In turn, 

these quantities depend on the channel characteristics and on the covariance of the 

information sequence and the additive noise: all of which may be unknown a t  the re- 

ceiver. Thus the MMSE gradient solution is not applicable to the practical situation 

in which the channel characteristics are unknown. 

5.2. The LMS stochastic gradient algorithm 

The stochastic gradient (SG) algorithm overcomes a problem of the MMSE solu- 

tion described in Section 5.1, namely, that the gradient vector is usually unavailable 

since taking the expectation required knowledge of the ensemble statistics. The ap- 

proach taken in this section is to circumvent this problem by, in effect, substituting 

a time average for the ensemble average. The troublesome part of Equation (5.7) is 

the expectation operator. The principle behind the SG algorithm is to ignore this 

operator. The quantity which is left, while random, has an expected value equal to 

the desired gradient. Thus, it is an unbiased estimate of the gradient. This "noisy" 

or "stochastic" gradient is substituted for the actual gradient in the algorithm of 

(5.7) resulting in the SG algorithm* 1221 

-- - - -. . . .- - * ll*,, means esti~riated value 



Consequently, an estimate of G j  is 

G .  = - e . x .  
3 3 3 

Incorporating (5.9) into (5.8) gives 

Note that  a constraint was imposed on the tap coefficient vector in Equation 

(4.23), as was described in Section 4.3 of the previous chapter. The tap coefficients 

were normalized,,suggesting a normalization of the coefficient updating vector (Equa- 

tion (5.10)) a t  each iteration as well. The stochastic gradient algorithm just derived 

does not take this extra step into account. However, the behavior of the SG algo- 

rithm as is will be used as an approximation for purposes of studying the convergence 

behavior of the adaptive prefilter. 

5.3. Convergence behavior of the SG transversal algorithm 

The convergence of an adaptation algorithm can be measured in two ways. T h e  

first way is t,o determine analytically or empirically how the output error decreases 

with time. This is usually done by calculating the output mean square error (MSE). 

The second method is to determine analytically or empirically how the filter coeffi- 

cients approach their opt,imum values with time. Since the coefficients are actually 

fluctuating, even asymptot~icallp for a fixed step-size algorithm, convergence is usu- 

ally measured in terms of the mean values of the filter coefficients. The two measures 

are of course closely related to one another 1231. 



5.3.1. Mean coefficient vector 

Before the output MSE of the filter as a function of time is investigated, it 

is simple and instructive to examine the mean value trajectories of the coefficients. 

Recall from chapter 4 that, at t h e n t h  iteration the mean square error is defined as 
\ 

(Equation (4.14)) 

To proceed with the analysis, it is convenient to reformulate the SG algorithni 

as follows: 

(1) Eliminate the error signal from Equation (5.10) 

(2) Define an estimated coefficient error vector 

and use it to jdirninate d, from the right hand side of (5.11) 

where enOllt is the instantaneous error when the taps are at .  their optimum setting. 

This is normally quite sniall and would be zero if perfect equalization were possible. 

Taking the expectation of both sides of Equation (5.14), and assuming e n O l , ~  = 0, we 

get 
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A 

To facilitate this analysis it is therefore assumed that Pn is approximately inde- 

pendent of the input sequence {X,). The analytical results based upon this assump- 

tion have proved that the mean value of the filter coefficients vector does converge, 

provided that the algorithm step size is small enough [24]. Equation (5.15) is therefore 

rewritten as 

(3) Represent the correlation matrix A in terms of its eigenvalues and associated 

eigenvectors, as shown by 

where the diagonal matrix A consists of the eigenvalues of A and the columns of the 

unitary matrix Q are the associated eigenvectors. Thus, premultiplying both sides of 

Equation (5.16) by QT,  we get 

Define the transformed coefficient error vector 

Also, using the property of the unitary matrix that Q Q ~  = I ,  we may write 

g T ~ P n  = QTAI@n 

= Q ~ A Q Q ~ P ,  

= nv, 
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and E [ ~ + I  1 = Q E [ Q ~ & + ~ ] .  Accordingly, we may rewrite Equation (5.18) in the 

form 

Vn+, = (I - AA)V, (5.21) 

This equation represents a system of uncoupled scalar-valued first-order difference 

equations, the kth  one of which may be written as 

and simply iterating this equation gives 

where vk(0) is the initial value if the kth element of the transformed coefficient error 

vector. The numbers generated by this solution form a geometric series with ratio 

For stability or convergence of the SG algorithm the geometric ratio must have 

magnitude less than one for all k.  This ensures that ,  regardless of the initial condi- 

tions, the transformed coefficient error vector v, approaches zero as the number of 

iterations n approches infinity and, correspondingly, that the coefficient vector C, of 

the filter approaches the optimum value C,31,t. Therefore, a necessary and sufficient 

condition for the stability of the algorithm in terms of the mean coefficient vectors is 

that the step size parameter A satisfy the condition 



Since all the eigenvalues of the correlation matrix A are real and almost always 

positive, the algorithm is stable if and only if 

2 
O < A < -  (5.26) 

X,,,,, 

where is the largest eigenvalue of the matrix A. This determines the largest 

possible value of A,  but of more interest is the A corresponding to the fastest con- 

vergence of the gradient algorithm. 

5.3 .2 .  The time constant 

The time constant r k  denotes the time required for the amplitude of the kth 

natrual mode vk(n) to decay to l / e  of its initial value vk(0), where e is the base of 

natural logarithms [23], i.e., 

rk = exp [- $1 
Hence, from Equations 

be expressed as follows: 

(5.25) and (5.27), we find that the kth time constant can 

For small A ,  we may approximate rk as 

The mean value of the tap vector can therefore be approximated as (after Equa- 

tion (5.23)) 



The second term on the right hand side of the equation is the error term which 

decays to zero if A is small enough. In particular, the convergence of the mean 

coefficient vector is limited by the smallest eigenvalue which produces the 

largest time constant r,,,:,,. It therefore takes more iterations to make adjustments in 

C along t.he direction of the eigenvector corresponding to X,,,i,, than along any other 

direction in the (2N + 1)-dimensional coefficient vector space. As will be explained 

in detail in t,he next section, there is a convenient relation between the input signal 

spectrum and the rate of convergence of E(C,). The more uneven the signal spectrum 

is, the larger the ratio of largest to smallest eigenvalues of A is likely to be, thereby 

causing the SG transversal algorithm to converge more slowly according to (5.30). 

5.3.3. Normalization of step size 

The SG algorithm displays an undesirable dependence of speed of convergence 

on input signal power. This can be seen from Equation (5.7): an increase in the size 

of the input signal of a factor a is equivalent to an increase in the step size A of 

a factor a2 (to na2). The same effect can be deduced from the eigenvalues of A. 

Thus, the speed of convergence of the SG algorithm is strongly affected by the size 

of the input signal. 4 serious consequence of this is that if the input signal grows 

too large then the adaptation algorithm becomes unstable.. One way to ameliorate 

this problem is to add an automatic gain control circuit before sampling the data. 

Another frequently used solution is to normalize the step size of the algorithm. The 

sizes of the updates can be kept, approximately equal if the update is normalized 

using an estimate of the input signal variance. In part,icular, consider the choice of 

step size 



where CY is a constant close to zero and a 2 ( n )  is an estimate of the input signal power 

at iteration n. So, as n tends to infinity, 

\ 

In this case CY controls both the speed of convergence (averaging time) and the 

scaling factor of the variance estimate. In order to approximately ascertain the effect 

of this normalization on the convergence of the mean coefficient vector, the step size 

A can be replaced by E [ A ( n ) ]  ~ r .  1/E [02(n)] in Equations (5.29) and (5.30). This 

is a reasonable approximation as long as the constant a is small enough to "smooth 

out" the statistical fluctuations in the step size A(n) ,  so that it can be regarded as 

virtually independent of the data samples. If the step size at  time n = 0 is initialized 

at the asymptotic value a/$@, where = E [z2(n)] ,  then E [A(n)] = a/$o for all 

n, and the time constant (Equation (5.29)) becomes 

where the fact that 

Xi = trace A = (2N + l )$o  
j = - N  

has been used. The normal mode time constants are therefore proportional to the 

ratio X:Lv/Xi where A:,, = is the "average" eigenvalue of A. A change in the input 

signal variance therefore causes a much less dramatic change in convergence speed, 

and Furthermore, the stability constraint Equation (5.26) is satisfied as long as 



To apply the above stability constraint to a system which uses a fractionally 

spaced equalizer (which is the case for the adaptive prefilter discussed in this thesis), 

some of the terms must be appropriately interpreted. Results were proven mathemat- 

ically indicating that for T!, = T / 2  and infinitely long FSEs half the eigenvalues are 

zero. It was also shown that for practical (finite length) FSEs, half the eigenvalues 

are.quite small (close t,o zero). The computer results, as shown in the next chapter, 

show that for Tp = T/4 only one quarter of the eigenvalues are effective in the sense 

that they contain around 95 percent of the energy. So, since three-quarters of the 

eigenvalues will be approximately zero, we have as a tight bound that 

5.3.4. Output mean square error 

Having described the behavior of the mean coefficient vector: we now investigate 

the filter's output MSE. Ideally, the MMSE (&,;,) is realized when the coefficient 

vector C, approaches the optimum value defined by the matrix form of the 

quadratic equations. As shown in Section 5.1, the gradient algorithm does realize 

this idealized condition as the number of iterations, n,  approaches infinity. This 

algorithm has the capability to do this because it uses exact measurements of the 

gradient vector at  each iteration. On the other hand, the SG (LMS) algorithm relies 

on a noisy estimate for the gradient vector, with the result that the coefficient vector 

C.,, only approaches the optimum value C,,,,t after a large number of iterations and 

then fluctuates about Consequently, use of the SG algorithm, after a large 

number of iterations, results in a mean squared error &, which is greater than the 



MMSE The amount by which the actual value of Em is greater than Elllin is 

called the excess mean squared error. Recall from Equation (4.11) that 

n 
MSE = & = C ~ A C  = (C - C , > , ~ ) ~ A ( C  - C0,t) - C & ~ A C ~ , ~  + ~ c ~ A c , , , ~  (5.36) 

Comparing the basic formula for the eigenvalues and eigenvectors of the matrix A 

with Equation (4.20) 

~ , T , t ~ ~ o p t  = Amin 

leads to the homogeneous equation . 

ACopt = AminCopt (5.38) 

Then, using Equation (5.38) to eliminate ACOpt from Equation (5.35) gives 

a 
qn = (C -  opt)^^(^ - Copt) 

to represent the excess mean squared error, then we have 

Recall 



Then 

En = qn - Emin + 2&min (1 + f T c o p t )  

= qn  + &ruin ( 1  f 2 e T c o p t )  ( 5 . 4 3 )  

Assuming that 6 is vanishing error close to zero, Equation ( 5 . 4 3 )  can be approx- 

imated as 

En = Qn + Emin ( 5 . 4 4 )  

As a compromise, Gitlin et. al. 1251 select the step size such that the residual 

excess mean squared error (5 .40 )  is an acceptable fraction of the minimum attainable 

steady-state error, i.e., 

goo = ?Emin 

where 0 5 y 5 1.  

The resulting steady-state step size is 

where 

As mentioned before, convergence behaviour for the LMS algorithm is only an 

approximation to the prefilter convergence case because of the constraint which was 

imposed in Equation (4.19). In the next chapter, we will study the convergence 

results of the adaptive prefilter after using this approximation for a given ratio of the 

excess mean square error to the MMSE. 



Chapter 6 

Computer Simulation Study 

A FORTRAN program was written to simulate the operation of the iterative 

least mean square error prefilter developed in this thesis in a synchronous data com- 

munication system. The prefilter tap gain coefficients are driven toward their optimal 

values which, tends to minimize the mean square distortion at the output. The pro- 

gram was implemented on a DEC VAX-111780 computer. 

In the next section, the results-are presented but the computer implementation 

is described in Appendix D. 

6.1. Computer simulation results 

In order to study the performance of the prefilter adaptive algorithm, it is sim- 

ulated using two types of channels: 

I) A data-quality telephone channel, and 

2) A channel with severe intersymbol interference. 

6.1.1. Simulation results for a data-quality telephone channel 

The equivalent discrete-time characteristic and the spectral characteristic for the 

channel under consideration are shown in Figures 6.1 and 6.2 respectively 1171. The 
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resulting eigenvalues of the channel autocorrelation matrix with signal-to-noise ratio 

(S/N) of 30dB are given in Table 1. A piece of the input and output waveforms of the 

adaptive prefilter after 5000 iterations is shown in Figures 6.3 and 6.4 respectively. 

A step size parameter A of 0.02 was used to adjust the coefficients. This choice of 

A was obtained from several experiments which showed that this step size provides 

the quickest compromise convergence for this channel. The equivalent convergence 

rate of the prefilter equalizer, with 41 tap coefficients, for 5000 iterations is shown in 

Figure 6.5. 

One trial for choosing the step size is applying the results developed for the LMS 

(Chapter 5), which conclude that 

and 

The resulting last 100 iterations of the output waveform for 5000 iterations 

and the rate of convergence for 7 = 0.01 or, equvalently, A = 0.004, with 41 tap 

coefficients, are shown in Figures 6.6 and 6.7 respectively. 



Eigenvalue 

number 
-- - - - - - - 

1 

2 

2 1 

2 2 

30 

3 1 

32 

33 

34 

3 5 

36 

3 7 

3 8 

39 

40 

4 1 

Eigenvalue 

Table 1. The eigenvalues of the autocorrelation matrix corres~~onding to a data- 

quality telephone channel (Figure 6.1) 



Figure 6.1. The equlvalent discrete-time characteristic for a data-quality tele- 

phone channel 

-30.00 L I I I I 
I 8 L I , 1 

0.00 0.31 0.63 0.99 1.26 1.57 1.88 2.20 2.51 2.83 3.14 
w frequency 

Figure 6.2. Amplitude spectrunl for the channel shown in Figure 6.1 



Figure 6.3. T h e  last LOO samples of the input prefilter waveforrri From 5000 

samples, using the channel of Figure 6.1 
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Figure 6.4. The result of the last 100 iterations of the output  signal of the 

prefilter for 5000 iterations for A ,  = 0.02 using the channel of Figure 6.1 
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Figure 6.5. The tap ktS tS corlvcrgence rate for A - 0.02 and 41 taps using the  

channel of Figure 6.1 
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Figure 6.6. The result of the  last 100 iterations of the output waveform for  5000 

iterations for A = 0.004 and 41 t,aps for the channel of Figure 6.1 



Figure 6.7. T h e  tap MSE convergence rate for A = 0.004 and 41 taps, using 

the channel of Figure 6.1 
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By examining these results, we can see that 

1. From Table I ,  half the eigenvalues are almost equal to the noise power in the 

channel, which is 9.1364 x The values of these eigenvalues are zero when there 

is no noise in the system. Half of the remaining eigenvalues are very small, which 

represents the transition band of the channel characteristic. The last quarter of the 

eigenvalues are the non-zero ones. 

2. Comparison between Figures 6.3 and 6.4 shows that the adaptive prefil.ter improves 

the uniformity of the zero crossings in the output signal. From the numerical results, 

the magnitude of the output signal varies between f 0.003 and f 0.05 a t  the desired 

zero-crossing point. 

- 3: For a step size of 0.004, the magnitude of the output signal varies between f 0.008 

and f 0.03 a t  the desired zero-crossing points (Figure 6.6). 

4. Comparing the results for the rate of convergence demonstrates that for the case of 

A = 0.02 (Figure 6.5), it takes approximately 300 iterations for the tap MSE to reach 

its steady-state value. For the case of A = 0.004 (Figure 6.7) ,  it takes approximately 

900 iterations. These results indicate that the algorithm converges faster for larger 

values of A: hut the MSE strays farther from its steady-state value due to the large 

step size. This behavior is to be contrasted with that shown in Figure 6.7: which is 

for the case A = 0.004. 

As a compromise, we choose a step size bet,weeri 0.02 and 0.004. When A = 

0.01, the tap MSE reached its steady-state value after 500 iterations while remaining 

relatively very smooth, as illustrated in Figure 6.8. The magnitude of the output 



signal varies between h0.005 and f 0.04 at  the desired zero-crossing points (Figure 

6.9). 



Figure 6.8. The tap  M Y  E convergence rate for A :- 0.0L using the channel given 

in Figure 6.1 
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Figure 6.9. The resulting last, LOO iterations of the output waveforrrl for 5000 

iterations for A = 0.01 using the channel from Figure 6.1 
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6.1.2. Simulation results for a channel with severe intersymbol interference 

Examples of the equivalent discrete-time characteristic and the spectral char- 

acteristic for this type of channel are shown in Figures 6.10 and 6.11 respectively. 

The computed eigenvalues of this channel au,tocorrelation matrix with a SIN ratio of 

30dB are given in Table 2. The same investigation steps are taken in this example as 

in the previous example. So, the input and output waveforms, after 5000 iterations, 

with an experimental step size of 0.115, are shown in Figures 6.12 and 6.13 respec- 

tively. Figure 6.14 shows the convergence characteristics of the MSE of the adaptive 

prefilter with 9 taps. The results of the last 100 iterations of the output waveform 

for 5000 iterations and the convergence characteristics of the MSE for y = 0.01, or, 

equivalently, A = 0.012, which due to applying the results of the LMS algorithm, are 

shown in Figures 6.15 and 6.16 respectively. 



Table 2. The eigerivalues of the autocorrelatiorl matrix corresponding to a chi- 

nel with severe intersyrnbol interference (Figure 6.7) 

- -  

Eigenvalue 

number 

1 
3 - 

-- 

Eigenvalue 

9.86123223-04 

9,86133823-04 

3 I 9.861574FiE-04 
I 

4 1 9.8618923E-04 

5 
i 1 8.4 L29293E-0.1 

6 / 2.8830357E-02 
I 

I 6.6886090E-02 I 
8 

I 1 0.5492329 

9 1.572700 



Figure 6.10. The  equivalent discrete-time characteristic for a channel with se- 

vere intersymbol interference 

w frequency 

Figure 6.11. Amplitude spectrum.for the channel of Figure 6.10 
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Figure 6. L2. T h e  last 100 samples of the input prefilter waveform, horn 5000 

samples using the channel given in Figure 6.10 
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Figure 6.13. The result of the last 100 iterations of the output  prefilter wave- 

form, from 5000 iterations, for A = 0.1 15, using the channel of Figure 6.10 



Figure 6.14. The  convergence characteristic of MSE of the prefilter wi th  53 taps 

for A = 0.115, using the channel of Figure 6.10 
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Figure 6.15. The result of the last 100 iterations o f  t,he output waveforrrl, from 

5000 iterations, for A - 0.012 and the channel of Figure 6.10 
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Figure 6.16. The convergence characteristics of the MSE for A = 0.012 and the 

channel of Figure 6.10 

8 3 



A careful study of these results illustrates that 

1. A similar observation can be rnade for the eigenvalues [Table 2) as in the first 

example, i.e., only one quarter of them are not zero. 

2. The uniformity and the accuracy of the zero crossings in the output signal, with 

both step sizes, is very clear. From the numberical results, the magnitude of the 

output waveform, for A = 0. l lri  (Figure 6.13), varies between zero and f 0.001 a t  

the desired zero crossing points. In the case of A = 0.012, the variation is between 

f 0.001 and +0.002 (Figure 6.15). 

3. In Figure 6.14, which is the case A = 0.115, approximately 80 iterations are re- 

quired to  reach steady-state operation and there is almost no deviation from steady- 

state operation once it has been reached. For A = 0.012 the MSE steady-state 

value is obtained after 150 iterations with no deviations. Comparing the results for 

both channels leads to a question: Why are more accurate results obtained for the 

channel with intersyrnbol interference? To answer this question we need to com- 

pare the channel characteristics, which are shown in Figures 6.1 and 6.10. Note that 

the discrete-time characteristic of the channel wi$h intersymbol intergerence is syrn- 

metrical, which is not the case for the other channel. The output waveform form 

the symmetrical channel has certain symmetry characterstics, even with the inter- 

symbol interference, as indicated in Figure 6.12, which the other channel is missing 

completely. 

This observation indicates that an important factor for uniforrn zero crossings of 

the timing wave is the symmetry of the pulse shape entering the timing path and that 

the intersymbol interference has no real effect on the uniformity of the zero crossings. 



Chapter 7 

Summary and Conclusions 

This study has proposed a fast-converging technique to improve the timing recov- 

ery method for synchronous PAM data signals. This technique is based on digitizing 

the analog timing recovery scheme by using an adaptive digital prefilter. 

The timing circuit under consideration consists of a square-law device followed 

by a narrow-band filter tuned to the pulse repetition frequency preceded by a prefilter 

for reshaping the pulse entering the timing path. The output of the timing circuit is a 

nearly sinusoidal timing wave whose zero crossings indicate the appropriate sampling 

instants for demodulation of the PAM signal. For a random data sequence, the timing 

wave exhibits phase fluctuations which are strongly dependent on the shape of the 

pulses entering the timing path and the pass-band shape of the narrow-band filter. 

Expressions for the rms phase fluctuations in the timing wave are represented as a 

function of the prefiltering characteristics of the filter preceding the square-law device 

and which have a form especially suitable when the signal is band-limited to frequen- 

cies less than the pulse repetition frequency. From the condition on prefiltering to 

optimize the pulse shaping and to give jitter-free timing recovery the performance of 

the self-adusting prefilter is presented. In the trend towards digitization of the timing 

circuit, the signal is sampled a t  the input to the timing path. Sampling is performed 
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at  a high enough rate taking into account the effect of the square-law device, which 

doubles the frequency range occupied by the signal. The resulting sampling rate, 

which is four times the baud rate, requires the prefilter to be a fractional-tap pre- 

filter equalizer. The advantage of this kind of equalizer over T-spaced equalizers is 

explained. Several interesting aspects of the optimum tap-coefficient problem are 

revealed by examining the minimum mean-squared error (MMSE), which depends 

on the channel autocorrelation matrix. The least-mean-square (LMS) algorithm is 

studied as an approximation to a iterative algorithm for adjusting the tap-gain co- 

efficients. The convergence behavior of the adaptive prefilter passed on the Lh4S 

algorithm was measured in two ways: 

1) The behavior of the mean coefficient vector, and 

2) The excess mean square error. 

The convergence properties of several examples were also studied by computer 

simulation. The behavior exhibited by such tap gains for different values of A and 

two types of channel indicate that the fracionally-tapped prefilter equalizer can adapt 

the zero-crossings of the timing wave in fewer than 600 iterations (600 transmitted 

pulses). In the current trend towards fully digital receivers using medium and large 

scale integration (MSI and LSI) technology, the present technique can be easily used 

to achieve both fast convergence and almost complete freedom from jitter. 



Appendix A 

Derivation of the variance of the timing wave 

Our-objective is to obtain a convenient expression for either E [ z2  ( t ) ]  or the 

variance Var z ( t )  of the timing wave, which will be manageable even when the degree 

of pulse overlapping is very large. We assume that the data mean value is zero and 

that the elements of the data sequence are statistically independent. From Equation 

( 3 4 ,  

so then 

and 

where 

But we have 



Now using (A.4) to collect the nonzero terms in (A.3) in the proper order, the 

result may be written as 

From (A.2), the first term in (A.5) is the square of the mean. Also, it can be 

shown that the last two terms in (A.5) are equal, so the variance can be written as 

Var r (t ) = 2 Ria (0) q i  (t - kT) + (2 - 3 ~ 2 ,  ( 0 ) )  9; (t - kT) (A.6) 
k m k 

Now, considering the Fourier series of (A.6) ,  obtaining the coefficients by appli- 

cation of the Poisson sum formula, and defining 

we get that 

a(t - k i . 1  (k)  exp [I?] 
k 1 



and 

where 

A(,) = [Q- 8 Q m ]  ( f )  = x [la Q m ( v ) Q m ( f  - v )  dv 
713 m -03 , 

Then 

00 

~ ~ ( f )  = H ( I )  / ~ ( f  - n ) ~ ( n )  exp I - ~ ~ W ~ T I  d n  (A. 10) 
-00 

Now, we can rewrite (A.9a) in the form 

03 

H ( f  - v ) G ( f  - A - v)G(A) exp [- j2rqmTl  dX dv I 
- exp [ -  j2.rrqrnTl dX dv dq 



Now apply the Poisson sum formula to the previous equation to obtain 

For the other term in Equation (A.6) 

Then from (A.lO), 

Then 

After comparing Equations (A.9) and (A.12) with (A.6), we can write Var z in 

the form 

Var ~ ( t )  = C Vr exp 
7 

where 



Appendix B 

Proof of Equation (4.23) 

. Theorem: 

The following three problems are equivalent, where A is a Hermetian matrix: 

( i )  Minimize 1/ (x ,  x) subject to (x, Ax) = 1. 

(ii) Minimize (x, Ax)/(x, x) for x # 0. 

(iii) Minimize (x, Ax) subject to (x, x) = 1. 

Proof: 

Let [, 7,  and 5 be the three minimum values from (i) ,  (ii), and (i i i )  and suppose 

that these occur a t  x = uo, vo, and wo respectively. The definition of ucl gives, for 

any other vector u such that (u, Au) -- 1, 

L 

F.::  - 1  r - (with (u,,, Aun) = (u,  Au) = I )  
( ~ n ,  uo) - (u,, u) 

Set ,z 7- pul: ,  and u = qv For any nonzero p and q. Then 

pp  6 = --- -' (I (1 ... - - - - (wi th  (z, Az) = p p  and (v ,  Av) = ijq) 
( 2 , ~ )  - (2r,v) 



Hence, 

This is true for any 11 # 0, and, in particular, for v = vo. Hence 

E L r l  

Now we reverse the argument. The definition of vo gives, for any other vector 

Set y = v0/ llvoll and u = v/ 1 1 ~ 1 1 .  Then (4) gives 

This is true for any u such that (u,u) = 1, and, in particular, for uo, which 

implies q 5 t. Combining this with (3) we obtain r)  = J ,  which demonstrates the 

equivalence of (i) and (i i ) .  The equivalence of (ii) and (iii) is proved similarly. 



Appendix C 

Proof of Equation (4.24) 

Theorem: 

If A is a Hermetian matrix with eigenvalues A 1  5 A 2  5 - 5 A,, then X I  5 p 5 

A, and X I  = min (x, A x )  , A n  = max (x, A x )  where p is defined to be the Rayleigh 
z#@ (4 z#@ (x,x) 

quotient corresponding to the Hermetian matrix A ,  which may be expressed as 

for any x # 0. 

Proof: 

If A is Hermetian, an orthonormal set if eigenvectors exists, say x l ,  x2, . . . , xn, 

where s; corresponds to Xi. Suppose that the expansion of an arbitrary vector in 

terms of the xi is 



and 

So we have 

Since Xi - X I  2 0 for all i, we have p > X1. Also, if  we choose x = xl, this gives 

p = XI, which proves the first statement 

XI = min (x, Ax) 
~ $ 0  (54 )  

The remainder of the theorem is proved similarly by considering p - A,. 



Appendix D 

Computer Implementation 

The contents of the computer program can be grouped into four categories. 

D .I. The optimal tap-gain coefficients calculations 

The object of this simulation is to  determine COI,t by computing the minimum 

eigenvalue for the autocorrelation matrix A'and its corresponding eigenvector. The 

program reads in the parameters of the equalizer, i.e., the number of taps and the 

signal-to-noise ratio. It also reads in the channel samples, which are given at  each 

band rate sampling l / T .  Before computing the channel autocorrelation matrix, the 

channel samples were interpolated by the cubic spline interpolation subroutine IC- 

SCCU to calculate their values a t  Tp = T / 4 .  Then the CORR subroutine calculates the 

autocorrelation matrix A. The system subroutine EIGRS was used to compute the 

smallest eigenvalue for the matrix, which is the minimum mean square error (MMSE). 

This suborutine gives also the corresponding eigenvec tor, which is the optimum tap 

coefficient vector C,l,t. 

D.2. Generate the prefilter's input signal at each tirne interval T / 4  

The input data for this packare are the channel samples after interpolation, the 

desired variance, and the desired number of samples. 

9 5 



Subroutine GGUBS generates pseudo-random independent uniformly distributed 

(-1 or 1) symbols. 

Subrouiine GGNML generates pseudo-ranom independent samples from a zero 

mean and desired variance Gaussian distribution. 

This noise vector is interpolated with the ICSCCU subroutine to determine the 

values of the noise samples at each Tr, = T/4 .  Then, the convolution of the channel 

samples with the input digits is computed in the CONVOL subroutine with adding the 

noise samples at each time interval T / 4 .  

The first three subroutines used in this package are drawn from the IMSL library 

and the last (CONVOL) was written by the author. 

D.3. Generate the prefilter's output signal 

The program reads in the tap coefficients and the input samples which were 

generated by the previous package: Note that the tap coefficients are updated each 

four time intervals Tp (i.e., each T ) .  So, for the first calculation of the output signal 

the program reads in the initial tap coefficients which it is given as input data. Then 

after each updating iteration, it reads in the new coefficient values from the output 

data and uses them to compute the prefilter's output signal. 

The convolution sum of the tap coefficients with the prefilter's input signal is 

calculated by the COHVOL subroutine to generate the output signal. 



D.4. Updating the prefilter's coefficients 

This program and the previous one are strongly related in the sense that we 

are using the output of the previous program a t  each nTQo calculate the updating 

vector according to Equation (5.10). For each iteration n ,  we are calling subroutine 

UPDAT, in which the step size A (given data)  is multiplied by the output signal at  

nT. The resulting value is then multiplied by each element of the input vector of the 

same time interval n T  resulting in the gradient vector. Each element of this vector is 

added to its corresponding tap  coefficient, resulting in the updated coefficient vector. 

In subroutine NORMTAP, we are summing the square of each element of the up- 

dating vector, then dividing each element by the sum to determine the normalized 

updated coefficient vector. 

In subroutine MSE, we are doing matrix multiplication to calculate the mean 

square error (MSE) according to the formula C ~ A C ,  namely, the product of a 1 x 

(2N + 1) row vector cT (the transpose of the coefficient vector) with the ( 2 N  + 1) x 

(2N + 1) autocorrelation matrix is then multiplied by a ( 2 N  + 1) x 1 column vector 

C resulting in the MSE. 

Note that the matrix is symmetric, so by doing the previous multiplication op- 

erations on the diagonal elements and the lower (higher) triangular matrix of matrix 

A only, we decrease the calculations by almost half. All the subroutines used in this 

package were written by the author. 

I: n = 0,1,2,  . . . is the iteration index 
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