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Abstract

This thesis investigates the problem of stability of pitch filters in speech coding.
The concern is on adaptive predictive coders employing pitch predictors.

A new algorithm that estimates the pitch period is coupled with the covari-
ance formulation of determining the pitch predictor coefficients in order to realize a
transversal structured filter. Since this approach does not guarantee the stability of
the gorresponding synthesis filter, a computationally efficient stability test based on
a simple but tight sufficient condition is formulated. This is much less computation-
ally demanding than utilizing a set of necessary and sufficient conditions derived
from known stability tests. From the sufficient condition, a stabilization technique
that ensures a stable pitch filter is introduced. An alternate method of deriving
the filter coefficients such that stability is guaranteed at the outset is obtained by
applying the Burg algorithm in realizing a lattice structured filter. For a lattice
predictor, the pitch period is estimated in a different way than for a transversal
predictor. The effect of the presence of unstable pitch filters on decoded speech is
also investigated.

At the analysis stage, the formant and pitch predictors may be placed in ei-
ther order. Both configurations are compared with regards to the stability and

performance of pitch filters. Recommendations for future research are given.



Sommaire

Ce mémoire examine les problemes de stabilité dans les filtres de périodicité
tels qu’employés par les systémes de codage prédictif adaptif avec prédiction du
fondamental.

On propose un nouvel algorithme de détection du fondamental qui, lorsque
combiné avec la méthode de calcul par covariance des coefficients du prédicteur,
permet la réalisation d’un filtre a structure transverse. Puisque cette approche ne
garantit pas la stabilité du filtre de synthése correspondant, on formule un test de
stabilité qui est basé sur une condition suffisante simple mais sévere et qui est efficace
du point de vue du temps de calcul. Cette solution est beaucoup plus efficace que
ne ’est 'utilisation d’un ensemble de conditions nécessaires et suffisantes obtenu a
partir des tests de stabilité déja connus. En se basant sur la condition suffisante, on
propose une technique qui assure la stabilité du filtre de synthése. Si ’on applique
I’algorithme de Burg lors de la réalisation du filtre en treillis, on parvient a une
autre solution qui, elle, garantit que les coefficients produits correspondent 3 un
filtre stable. On estime le fondamental de fagon différente pour un prédicteur en
treillis que pour un filtre & structure transverse. Enfin, on analyse ’effet qu’a la
présence d’instabilités dans les filtres de syntheése sur le signal décodé.

Au niveau de Panalyse, on peut placer les prédicteurs de formants et de fonda-
mental dans n’importe quel ordre. Ce travail compare ces deux configurations au
niveau de la stabilité de leurs filtres de synthése et de la performance de leurs filtres
de prédiction du fondamental. Finalement, on offre des recommendations au sujet

de recherches futures possibles.
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Chapter 1 Introduction

1.1 Adaptive Predictive Coding of Speech

Speech coding concerns itself with transmitting a speech waveform over a dig-
ital channel. Although a speech waveform is not necessarily bandlimited, lowpass
filtering ensures that the resulting waveform has essentially a finite bandwidth. The
cutoff frequency of the filter is chosen so that this finite bandwidth includes per-
ceptually important frequencies in the speech signal. The finite bandwidth of the
filtered waveform allows it to be sampled at a rate which avoids aliasing at the
receiver. After obtaining the sampled signal, the goal is to code the speech at a low
bit rate while maintaining high quality in the reconstructed speech.

The required bit rate can be lowered by exploiting redundancies in the speech
signal. These redundant components can be predicted from the recent history of
the signal. This concept is known as predictive coding and was pioneered by Atal
in the early 1970’s [1,2].

In predictive cociing, two types of prediction are used. One is based on the spec-
tral envelope (formant prediction) and the other based on the spectral fine struc-
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ture (pitch prediction). Formant prediction removes near-sampled-based redundan-
cies introduced by the vocal tract filtering while pitch prediction removes distant-
sampled-based redundancies caused by the rhythmic glottal excitation (pitch period
excitation) [3].

Both formant and pitch predictors must be adaptive since a speaker’s vocal
tract shape and pitch are time varying. Therefore, the coefficients of these predictors
change within a short period of time and are reset every 10-25 milliseconds. The use
of adaptive predictors in speech coding gives rise to the name Adaptive Predictive
Coding (APC). The performance measure for a predictor is the prediction gain.
The prediction gain is the ratio of the energies of the input and output signals of
the predictor. In APC, the formant and pitch predictors may be cascaded in either
order. However, it has been observed that the total prediction gain of either serial
combination of the predictors is less than the sum of the prediction gains of each
predictor acting alone [4].

After performing effective formant and pitch prediction, a residual signal is
obtained. Effective prediction is achieved when the coefficients of the filters are
chosen with the objective of minimizing the energy of the residual. The operation
of an APC system (details are given in next chapter) involves the transmission of
the quantized residual, the predictor coefficients and the step size of the quantizer.
The transmission of the residual occupies the largest portion of the total number of
bits used, but also requires fewer bits/sample than the original speech signal. The
quantizer for the residual signal often uses non-uniformly spaced step sizes.

A derivative of APC, namely CELP (Code-Excited Linear Prediction) [5], does
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not use sample-by-sample quantization of the residual (details given in next chap-
ter). The residual signal, after gain normalization, has a cumulative probability
distribution closely resembling a Gaussian distribution with the same mean and
variance [6]. Therefore, the residual is tested for its resemblance to one of many
Gaussian waveforms stored in a dictionary. This is equivalent to a vector quanti-

zation scheme. It is the index of the selected waveform in the dictionary that is

transmitted.

1.1.1 Formant and Pitch Predictors

Both the formant predictor and the pitch predictor are FIR (finite impulse
response) digital filters that are usually implemented in direct form or lattice form.
The order of a formant predictor is typically between 8 and 16 for low bit rate
éncoders. Simple pitch prediction uses only one coefficient (one tap prediction)
where the tap delay of the predictor corresponds to the estimated pitch period.
However, a 3 tap predictor performs better than a 1 tap predictor. In a 3 tap
predictor, the middle coefficient is associated with a delay equal to the estimated
pitch period. A 3 tap predictor also allows interpolation of the speech samples in
the delayed version to more precisely match the undelayed version. This is very
useful since the pitch period is not necessarily an integral number of samples.

At the transmitter, the stability of the formant and pitch predictors is guaran-
teed since they are FIR filters. At the receiver, formant and pitch synthesis filters

‘restore the near-sampled-based and distant-sampled-based redundancies to yield
the decoded speech waveform. These synthesis filters are all-pole IIR filters and
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hence, stability is an issue. The stability of a formant synthesis filter is guaranteed
if the predictor coeflicients are derived using the autocorrelation [7} or modified
covariance method [8].

In practice, unstable pitch synthesis filters arise frequently since the analysis
techniques do not guarantee their stability. This thesis provides a stability test for
1, 2 and 3 tap pitch synthesis ﬁlters_ based on a tight sufficient condition and devises
analysis algorithms that guarantee stability. The effect of instability on decoded

speech is also investigated.

1.2 Scope and Organization of the Thesis

The entire thesis is organized into six chapters. After the introduction, Chapter
2 describes two speech coders, APC and CELP.

Chapter 3 deals with the stability issues that emerge when a pitch filter is used in
these coders. First, the cause of instability is examined. Then, known stability tests
are discussed briefly. Finally, a stability test for 2 and 3 tap filters is formulated.
This test is based on a tight sufficient condition and can be implemented in a real-
time environment.

In Chapter 4, experiments involving a CELP system in which a formant pre-
dictor is followed by a pitch predictor are performed. A new method of estimating
the pitch period is derived. This method can be coupled with the covariance for-
mulation to calculate the pitch predictor coefficients. Since the solution does not
guarantee stability of the pitch filter, a technique to stabilize the filter while min-
imizing the loss in prediction gain is suggested. The Burg algorithm is also used
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to generate a lattice structured pitch filter which is guaranteed to be stable. The
prediction gains achieved by the stabilization and the Burg methods are compared
with that of the covariance algorithm. Finally, the effect of having unstable pitch
filters on decoded speech is examined.

Chapter 5 deals with a CELP coder that has a pitch predictor followed by a
formant predictor. This arrangement is compared with the previous configuration
in order to determine which arrangement of the two filters is superior. The chapter

ends with some suggestions for future research. Chapter 6 records the conclusions

of the investigation.



Chapter 2 APC and CELP Coders

This chapter describes the operation of APC and CELP coders. Both coders
use formant and pitéh predictors to remove the redundancies in the speech signal.

Formant predictors have a transfer function:

p
F(z)=)_ apz * (2.1)
k=1

The order p is typically between 8 and 16 for low bit rate coding. Pitch predictors

consist of 1, 2 or 3 taps having transfer functions:

ﬂz_M 1 tap
P(z) = ﬂlz_M + 523_(M+1) 2 tap (2.2)
Brz”M=1) 4 gor™M oy gy (MHY) 3 ¢ap

where M is the estimated pitch period in samples. Therefore, a pitch predictor has
a small number of taps that are placed after a long delay and centered around the
pitch period. The polynomials 1 — F(z) and 1 — P(z) are the transfer functions of
the prediction error filters. At the synthesis stage, a formant synthesis filter Hp(z)
and pitch synthesis filter Hp(z) are used. Their transfer functions are:

1 1

HF(Z) = m and HP(Z) = m

(2.3)



2.1 APC System

To clearly understand the operation of an APC system, first assume that only

a formant predictor is used. The block diagram of such a coder is shown below.

e(n) O)) &n) 8(n)
s(n)"?——ﬁ 0 > ..
F(2)
Em) Fé

&) synthesis

F(2) |[@¢——

analysis

Fig. 2.1 Block Diagram of an APC Coder

The formant predictor is part of the feedback loop and predicts the input signal
s(n) on the basis of previously reconstructed samples §(n — k) for k = 1 to p. The

error signal e(n) is expressed as:
e(n) = s(n) — 3(n) (2.4)
The predicted signal 3(n) is a weighted sum of previously reconstructed samples:

P
3(n) = D apd(n — k) (2.5)
k=1

The error signal is quantized to give &(n). Then, any reconstructed sample 3(n) is
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given by:

§(n) = &(n) + 3(n)
£ (2.6)
= &(n) + )_ ard(n — k)
k=1
Manipulating the above equations give:
p
e(n) = 3(n) — Z ar8(n — k)
k=1
= (8(n) — s(n)) + (s(n) — kz: apd(n — k)) (2.7)
=1
= e(n) + q(n)

The quantity g(n) is the quantization error. This error is interpreted as being a
source of additive noise. Assuming an error-free channel, this is the only noise

introduced in the APC system.

The synthesis step is merely the inverse operation of the analysis step. Since

the only source of noise is quantization error, the reconstructed speech signal 3(n)

is expressed as:
() = s(n) + a(n) (2.8)

Therefore, the reconstructed samples are equal to the original samples plus the noise
arising from the quantization of the error signal.

Figure 2.2 shows an APC coder with both a formant and pitch predictor. Here,
formant prediction is done before pitch prediction. The positions of the two pre-
dictors may be interchanged. The mathematical development of the analysis is just
an extgnsion of the development given for a coder with just a formant predictor.

Again, the only source of noise is quantization error.
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() ? e'(n) ¥e"(n) a e“(n) -

P(2) l—

stn) #:

s(n)
F(2) [ ———
analysis
e"(n) e'(n) 8(n)
P(2) [ F(2) [—
synthesis

Fig. 2.2 Complete APC Coder

2.1.1 Noise Shaping

Modification of the spectrum of the quantization error can reduce the perceptual
distortion in the decoded speech [8], [9]. An alternate description of the APC coder
with a noise feedback filter N(z)‘ is shown in Fig. 2.3 [10]. The open-loop predictor

configuration is used in CELP (discussed in next section) for both the formant and
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pitch filters. The quantization error is fed to a feedback filter N(z). The output
of this filter is subtracted from the residual and again fed to the quantizer. It
can be shown that the spectrum of the coder output noise can be modeled by the

quantization error filtered by (1 — N(z))/(1 — F(2)).

s(n) en) ’(i )

9 F(2)
N(z)
analysis
é(n) S(n)
F(2) lq—
synthesis

Fig. 2.3 APC Coder with Noise Shaping

The filter N(z) is often selected to be N(z) = F(z/a) where the weighting

factor a is between 0 and 1. If @ = 0, then N(z) = 0 and the quantization error has
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the same spectral envelope as the original speech. If & = 1. then N(z) = F(z) and
the noise retains its flat spectrum. This produces a high SNR (signal-to-noise ratio)
at the formant frequencies and a low SNR at the valleys of the spectral envelope
of the speech. By selecting o between 0 and 1 (common values are between 0.75
and 0.85), the SNR is improved in the valleys but at the expense of decreased SNR
at the formants. Although the overall unweighted SNR decreases if o is decreased

from 1, noise shaping reduces the perceptual distortion of the output speech.

s(n) A _en) e(n)
—» F(2) ] P(2)]
analysis
€"(n) &) 3(n)
P(z) j—— F(2) [ ¢—
synthesis

Fig. 2.4 Block Diagram of CELP System
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2.2 Code Excited Linear Predictive (CELP) Coding

Figure 2.4 illustrates a CELP coder. In CELP [5], a residual signal is gener-
ated by formant and pitch prediction. The residual (after gain normalization) is
compared to each waveform in a codebook constructed of Gaussian random num-
bers with unit variance. A Gaussian distribution is used since the gain normalized

residual signal has a distribution which is nearly Gaussian.

To perform the comparison, each entry in the codebook is first filtered by a
pitch synthesis and formant synthesis filter and subtracted from the original speech
signal to form a difference signal. The difference signal is then passed through a

perceptual weighting filter W (z) where:

W(z) =-- (2.9)

This filter de-emphasizes the frequencies which contribute less to perceptual error
and emphasizes the frequencies which contribute more to perceptual error. Then,
the weighted mean-squared error is formed by squaring and averaging the filtered

difference signal. This entire process is depicted in Fig. 2.5.

The entry in the codebook that gives the least perceptual error represents the
residual. Its index is transmitted. This is equivalent to a vector quantization
scheme. The synthesis operation is the inverse of the analysis operation. The

codeword representing the residual is filtered by Hp(z) and Hp(z) to generate the
decoded speech.
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ORIGINAL SPEECH s(n)
CODEWORD sin) :(_ !)

P(2) @ F(2) f—

e(n)

2
ERROR | averace le—— ) wiz) le—oI

Fig. 2.5 Calculating the Weighted Error

2.3 Similarities and Differences Between APC and CELP

In both APC and CELP, formant and pitch prediction generate a residual signal.
In an APC coder, prediction is based on past reconstructed samples whereas in
CELP, prediction is based directly on the past input samples.

Transmission of the predictor coefficients occurs both in APC and CELP. Usu-
ally, a transformation of these coefficients to a new set of quantities having superior
quantiiation properties (such as reflection coefficients or line spectral frequencies
for formant predictors) is performed before quantization. Scalar quantization of
each residual sample is done in APC whereas a vector quantization scheme is used
in CELP to code a block of residual samples.

A weighting filter that modifies the noise spectrum can be used in both coders
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although the implementation of this filter as part of the overall system is different. In
APC, the only source of error is quantization error. Similarly, it can be shown that
the output of a CELP coder consists of the original speech signal plus quantization
error.

Unlike APC, CELP requires the storage of a codebook consisting of different
waveforms with a Gaussian distribution. This imposes a large memory requirement
on the system. A considerable computational requirement is also present since the
residual must be compared with each waveform in a codebook. However, CELP

can code speech at lower bit rates but at the expense of extra computation and

memory.
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Chapter 3 Stability Analysis of Pitch Filters

This chapter deals with the stability of pitch synthesis filters. For analysis frame
sizes of interest, using either the modified covariance or autocorrelation methods in
determining the coeflicients of a formant predictor ensures the stability of Hp(z)
without significant loss in prediction gain as compared to the optimal covariance
method. No equivalent algorithm for a pitch predictor that gives a stable Hp(z) is
available. Since an unstable H p(z) can occur in some frames of speech, this chapter

introduces a stability test for pitch synthesis filters.

3.1 Definition of Stability

Consider a digital filter with rational transfer function H(z) where:

(3.1)

The impulse response of H(z) is a discrete-time sequence h(n). A stable system
is one where every bounded input d(n) produces a bounded output ¢(n). This

is referred to as bounded-input bounded-output (BIBO) stability. An equivalent
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condition tests the impulse response [11}:
oc

> |h(k)] < oo (3.2)

k=—o00

In the z-domain, the condition for BIBO stability is that the poles of H(z) or
equivalently the zeros of D(z) lie within the unit circle, |z| = 1. For low order D(z)
(order < 10), one can use root finding algorithms to determine the location of the
zeros and establish whether or not all are within the unit circle. Pitch synthesis
filters have an order around M, where M is the estimated pitch period in samples.
The pitch period is in the range 25 to 80 for female speakers and 40 to 110 for male
speakers when the sampling frequency is 8 kHz. Determining the root positions
of such a large degree polynomial is not practical even though it has only a small
number of non-zero coeﬁicients.. For implementation as part of a coding system, a
stability test should be simple and avoid excessive computational overhead on the

coder. A simple stability test that can be implemented as part of the overall coding

system is introduced.

3.2 Origins of Instability

In a coder, it is useful to know how an unstable pitch synthesis filter is encoun-
tered. For purposes of simplicity, this is illustrated for a 1 tap filter. However, the
concept carries over to filters with a larger number of taps.

A 1 tap pitch synthesis filter has a system function:

1 zM

HP(Z): l—ﬂZ_M = ZM"‘,B

(3.3)
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In this case the order of the denominator polynomial is very high but solving for

its roots is simple. The zeros of the denominator polynomial are given by:

2 = Iﬂ\l%l exp(%) fork=1to M (3.4)

In the z-plane, the zeros z; form a circle of radius |ﬂlﬁ and are separated form
each other in angular frequency by %} radians. For all the zeros z; to be within the
unit circle, it is necessary and sufficient that |3| < 1.

To investigate how instability occurs, assume that the pitch prediction is per-
formed on a signal s(n). In a 1 tap filter, 8 is obtained by minimizing the energy

of the residual over a block of N samples,

N
Z SkSk-M
_ k=1
Z Sk—-M
k=1

The derivation of the above expression and the determination of the value of M
are discussed in the next chapter. Here, only the issue of stability is being studied.
An unstable pitch synthesis filter arises when the absolute value of the numerator
of Eq. (3.5) is greater than the denominator (|8} > 1). This usually arises when a
transition from an unvoiced to a voiced segment takes place. Such a transition is
marked by an increase in the signal energy. When processing a voiced frame that
occurs just after an unvoiced frame, the denominator quantity Es%_ A involves
the sum of squares of amplitudes in the unvoiced segment and does not reach a
very large value. On the other hand, the numerator quantity ) s;s;_ps involves

the sum of products of the higher amplitudes from the voiced frame and the lower
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amplitudes from the unvoiced frame. Therefore, often the numerator can be larger
in magnitude than the denominator giving |8| > 1.

From the analysis above, one can conclude that unstable pitch synthesis filters
can arise when the signal energy shows a sudden increase. Figure 3.1 shows an
actual speech waveform, the energy in each analysis frame and indicates frames
having unstable 1 tap pitch filters (those with a non-zero indicator function).

Figure 3.2 shows an enlarged plot of frames 16 to 18 where a transition from an
unvoiced frame (16) to a voiced frame (17) occurs. An increase in signal energy is
depicted and the voiced frame 17 has an unstable pitch synthesis filter. This type

of root cause of instability in 1 tap pitch synthesis filters carries over to 2 and 3 tap

filters.

3.3 Stability Tests

A simple stability test is not available for 2 or 3 tap pitch filters although there
are many different tests that may be used to obtain a set of necessary and sufficient
conditions. A pitch synthesis filter has a denominator polynomial which is sparse
(high order but with only few non-zero coefficients). A test that takes advantage
of this sparse nature is the Schur-Cohn test [12,13]. Appendix A gives the general
form of this test and shows how it can be applied to pitch synthesis filters. The
implementation is computationally efficient.

Another form of the Schur-Cohn test [12] is given in matrix form. Given a

polynomial of order n, the determinants of a set of 2k by 2k matrices {for k =1 to
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Fig. 3.1 Indications of Instability (1) Speech Data, (2) Input
Energy in Each Frame (db) and (3) Frames Having
Unstable Pitch Synthesis Filters

n) must be evaluated. To ensure stability, the determinants must alternate in sign

with the first one being negative. For pitch filters, the 2k by 2k matrices can be
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Time vaveforn. File = VENUS_DATA1:[AUDIODATAADDNS. AUD;
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10}
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Fig. 3.2 Enlarged Plot of Frames 16 to 18 (1) Speech Data,
(2)Input Energy in Each Frame (dB) and (3) Frames
Having Unstable Pitch Synthesis Filters

transformed into k by k matrices without altering their determinants. These new

matrices are tridiagonal and pentadiagonal for 2 and 3 tap filters respectively. The
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determinants of a tridiagonal matrix can be evaluated by a simple recursion. The
pentadiagonal matrices can be recursively reduced to tridiagonal form by elementary
row and column transformations to facilitate the calculation of the determinants.
No actual storage of the matrices is necessary. Although the determinant form of
the Schur-Cohn test can be reduced in complexity for pitch filters, the original form
is still easier to use. Jury’s simplifications of the Schur-Cohn test complicate the
formulation for this problem and are therefore not considered.

Schussler’s stability theorem [14,15] also gives a set of necessary and sufficient
conditions. A symmetric and anti-symmetric polynomial is defined in terms of
the denominator polynomial. If the roots of the symmetric and anti-sjrmmetric
polynomials are simple, on the unit circle and separate each other, the denominator
polynomial has all its roots within the unit circle. If this theorem is used, both
the symmetric and anti-symmetric polynomials formed are of high order. Finding
their roots and ensuring that they are on the unit circle, are simple and separate
each other requires a large amount of computation even if the symmetric and anti-
symmetric nature of the polynomials is exploited. Recently, a test in table form
that uses the symmetric and anti-symmetric polynomials defined by Schussler has
been proposed [16]. In the case of pitch filters, it is not as efficient as the Schur-
Cohn test since it does not take advantage of the sparse nature of the characteristic
polynomial.

Even though a computationally efficient implementation of the Schur-Cohn test
is possible (described in Appendix A), a comparatively simple alternative test is now
formulated. This alternative test is based on a tight sufficient condition and is used
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in the experiments. This does not mean that the implementation of the Schur-Cohn
test should not be used. If it is used, a set of necessary and sufficient conditions
are available at the cost of increased computational load. The computational load
increases with the order of the filter. Also, if the simple sufficient test is used and
the filter is judged to be possibly unstable, stabilization is very easy (this idea is

explored in Chapter 4).

3.4 Stability Test for Pitch Filters

In this section, a stability test based on a tight sufficient condition is presented.
The advantages of the stability test are that it is not computationally demanding,
does not involve the evaluation of transcendental functions and is independent of the
pitch period (approximately equal to the highest degree or order of the characteristic

polynomial). Independence of the order is useful since in each analysis frame, the

estimated pitch period can change.

3.4.1 Sufficient Test

Consider a general denominator polynomial D(z) of the form,

D(z) = 2" — B(z) (3.6)
where
n—1 .
B(z) = Z b;2". (3.7)
1=0

Then, D(z) = 2" — B(z) = 2™(1 — 27 "B(z)). The polynomial D(z) has roots
zkv = rpe/% in the z-plane. It is desired that all the roots z; be inside the unit
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circle. Therefore, the conditions are that 1 — 27" B(z) # 0 or 2" "B(z) # 1 on and
outside the unit circle z = e/%. By the maximum modulus theorem [17], z~™B(z2)
has its maximum modulus on the contour surrounding any region in which it is
analytic. The expression z~ " B(z) being a polynomial in 271 is analytic on and
outside the unit circle in the z-plane. Therefore, a sufficient condition for stability
1s that |27 "B(z)| < 1 on and outside the unit circle in the z-plane. This condition
is further expressed as

|2""B(z)| <1 for z=¢l? (3.8)
or simply

|B(e?%)] < 1. (3.9)

For B(z) as defined in Eq. (3.7),

|B(e77)] = 1bo + bre?’ + -+ by ? )
(3.10)
< lbof + 1o1| + -+ + [bu—1]
The sufficient condition for stability is that the sum of the moduli of the coefficients
is less than 1. This simple test can be applied to any predictor. Specifically for

pitch filters, the sufficient condition for stability becomes:

3] <1 1tap
1B1] + 82| <1 2 tap (3.11)

1B} + 82| + 83| <1 3 tap
By performing a more detailed examination of the expression |B(ej6)|, an attempt
to tighten the sufficient condition is made. The goal is to develop a test that

is independent of the order and asymptotically tight. For 1 tap predictors, the
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condition is both necessary and sufficient as shown earlier. For 2 tap filters, it
will be shown that the test is also asymptotically necessary (n — o0). A tighter

sufficient test is developed for 3 tap pitch predictors.

3.4.2 Tight Sufficient Test

2 Tap Filters

Although the test for 3 tap filters subsumes the test for 2 tap filters, a detailed
derivation of the 2 tap case is given in order to illustrate how the expression | B(e’?)]

is examined.

For a 2 tap filter:
B(z) = Bz + B2

(3.12)
= Vz(V2B1 + B2/V2)
Then, on the unit circle:
‘0 0 6 . .0
B(e?”) = ¢z [(51 + B2) cos 5 + j(B1 — Pa)sin 5] (3.13)
If ¢ = 0/2 then,
B(e'?) = e/*B!(¢79) (3.14)
where
B'(e7%) = [(ﬁl + Bg) cos ¢ + j(By — Ba) sin d)]. (3.15)

The expression B'(ej¢) defines an ellipse with major axis |8y + B2 if §; and S
have the same sign or |31 — B9 if 8; and B9 have different signs. The two cases are
illustrated in Fig. 3.3.
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(a) Horizontal Axis is the Major Axis

18-l \
O
lg+8,1

(b ) Vertical Axis is the Major Axis

Fig. 3.3 [Illustration of the Stability Test Ellipse for 2 Taps
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Stability is ensured if the ellipse lies entirely within the unit circle. This requires

that:

|81+ B2] <1 when #; and (5 have the same signs
(3.16)
|81 — B2] <1 when 81 and B3 have opposite signs

Combining the two conditions gives the sufficient condition |8y| + |f2| < 1 for the
stability of a 2 tap filter. This is the same as the sum of the moduli condition found

above. The asymptotic tightness of this test for 2 tap filters is shown later.

3 Tap Filters

In a 3 tap filter:
B(z) = py2° + Bz + Bs

(3.17)
= 2(B12 + Bz + B3z ")
On the unit circle,
B(e’?) = €19 B'(e7%) (3.18)
where
B'(e?%) = [By + (B1 + Bs) cos 6 + j(B1 — Bs) sin ). (3.19)

Again, B'(ejg) defines an ellipse with center 85 and major axis |8 + B3| if f; and
B3 have the same signs or |8; — B3| if By and B3 have opposite signs. The two cases
are illustrated in Fig. 3.4. The cases 9 > 0 and 2 < 0 are symmetrical. For now,
the B9 > 0 is considered. Later, the analysis is extended to 8y < 0.
If By and B3 have the same signs, the ellipse lies entirely within the unit circle
if,
82| + 181 + B3] < 1 (3.20)
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(a) Horizontal Axis is the Major Axis
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(b) Vertical Axis is the Major Axis

Fig. 3.4 Illustration of Stability Test Ellipse for 3 Taps
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or equivalently,

|81 + |Ba] + |83 < 1. (3.21)

If 81 and B3 have opposite signs, the analysis is more complicated. Even if all
points on the major axis |37 — B3| lie within the unit circle, the ellipse may touch
the circle at a point of tangency X as shown in Fig. 3.4(b). Using the substitutions
a = |B1+ B3| and b = |31 — B3], the condition 85 +a < 1 ensures that no point on the
minor axis lies outside the circle. Similarly, no point on the major axis is outside
the circle if ﬁ% + b% < 1. These are necessary conditions for the ellipse to lie within
the unit circle and will be assumed to be satisfied for the following discussion.

The ellipse with center 39 has an equation 9 + a cos 8 + jbsin 8. Therefore, the
slope of any line tangent to the ellipse is given by:

—Jdngina _ bcost

a%acosa ~ asind

(3.22)

Let the value of b for which the ellipse is tangent to the unit circle be denoted as
bmax- If b < bpyax, the ellipse lies entirely within the circle. If b > byax, @ portion

of the ellipse lies outside the circle. At b = by ,x, the slope of line OX is

bmax sin -y

Bt e 3.23
B9 + acosy tan ¢ ( )

where v is the value of the angle & which gives tangency. The slope of the tangent

line to the ellipse at point X is — (83 + acos ) /(bmax siny). Equating appropriate
slopes gives:

_ By +acosy _ _bmax_cosq (3.24)
bynax sin -~y a sin =y
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Solving Eq. (3.24) for cos~ gives:
COSY = gy (3.25)

where siny # 0. Tangency also occurs if siny=0o0ory=0. f y =0, 89 +a = 1.
But, the condition 89 + a < 1 must be satisfied. For 89 > 0, it suffices to consider
0 < |y| < §. Otherwise, no point of tangency exists.

In addition to the requirement on the angle «, a point of tangency exists if the

length of OX equals unity. Therefore, regarding AOXZ:
(B2 + acos '7)2 + (bmax sin ’7)2 =1 (3.26)

From Egs. (3.25) and (3.26) and using the identity sin?y = 1 — cos® 4, it can be

shown that bp,x can be found by solving f(brznax) = 0 where:
F(b%) = b* + b2(B2 — a? — 1) + a® (3.27)

Equation (3.27) describes a quadratic in b2. The properties of f(b2) are dis-
cussed in Appendix B. The properties are that the two roots of f(bz) are real and
positive and that the desired solution of f(b2) = 0 is the larger of the two roots.
In fact, the smaller root is not permissible due to the bound 0 < cos~y < 1. The
ellipse shown in Fig. 3.4(b) is entirely within the unit circle if b < bpax. To check
that b < byax, one need not solve the equation f(b,znax) = 0. f b2 < afy + a2, the
ellipse is within the circle. Note that just because b2,ax cannot be less than afy + a?
does not mean that b? cannot be less than aBy + a?. If 62 > afy + a?, one must
check that f(b%) < 0. If one of the two above conditions hold, there is no point of
tangency (b < bpax) and the ellipse lies entirely within the circle.
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The analysis shown above has used the condition 89 > 0. The analysis for the
case B9 < 0 is very similar and the resulting conditions merely involve replacing 5
by |B2]. Therefore, the implementation of a stability test for a 3 tap pitch synthesis

filter is given below.

Stability Test

Let a = |8y + B3] and b = |B; — B3|
1. If a > b, then check:

(a) [B1] + |Ba| +18s] < 1
2. If a < b, then check:

(a) B2 +a <1
(b) BZ+b2 <1
() (i) b* < a®+alBs| or
(ii) F(b%) =b* 4+ 0%(B% —a? - 1) +a® <0

Depending on the relationship between a and b, part 1 or 2 must be checked. If
tvhe latter is to be checked, conditions (a), (b) and parts (i) or (ii) of condition (c)
must be satisfied. When a > b, the test ensures that all points on the major axis
are inside the circle. When a < b, conditions (a) and (b) ensure that all points on
the major and minor axes are within the circle. Part (i) of condition (c) deals with
the situation when the bound 0 < cos+y < 1 does not hold. Part (ii) of condition
(¢) is checked when 0 < cosy < 1.

This stability test is tighter than the test |81]+ |82|+|03| < 1 since it can detect
the stability of certain filters which the other test cannot. As a simple example,
consider D(z) = 2% —0.322 — 0.7z +0.1. This polynomial has all its zeros within the
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unit circle. In this case, 87 = 0.3, 89 = 0.7, 3 = ~0.1, a = 0.2 and b —=0.4. The
expression |B1] + |B2| + |B3] = 1.1 > 1.0. But using the stability test given above
yields:

2. a<b

(a) |B2| +a=0.9<1
(b) B2 +b2=065<1
(c) (i) b2 =0.16 < a® + a|Bs] = 0.18

The tighter test indicates that D(z) has all its zeros within the unit circle while
simply checking the sum of the moduli of the coefficients does not. On the other
hand, if |81} + | 82| + |B3| < 1 (which is the test given in Eq. (3.10)), the conditions
in this stability test will alWa,ys be satisfied.

The stability test for 3 tap filters subsumes the test for 2 tap filters. By setting

By = 0, a 3 tap filter becomes a 2 tap filter. Then, a = b and one must test that

|B2] + |83} < 1. This is precisely the test for 2 tap filters.

3.5 Further Analysis of the Sufficient Condition

The stability tests for 2 and 3 tap pitch synthesis filters constitute a set of
sufficient conditions. Now,‘ the intention is to examine how tight the sufficient
condition is.

The sufficient test defines a region in (81, 89, 83) space within which stability is
guaranteed. The boundaries of the exaét necessary and sufficient conditions depend

on the order n. However, it will be shown that as n — oo, the boundaries of the
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necessary and sufficient region converge to those of the sufficient test. A 3 tap filter
i1s analyzed.

Consider a combination of 1, B2 and f3 or equivalently |B9|, @ and b which
result in a stable filter. Then, the roots of D(z) are inside the unit circle. Let |3s],
a and/or b increase to the point at which the ellipse touches the unit circle. Then,
B(ei%)| = 1.

A root of the characteristic polynomial 1 — 27 "B(z) is on the unit circle if:

1—2z"B(z) =0 forz=el
= 1= e /(1018670 | B, 4 e =0 (3.28)
= 1— ¢ In" 10 B! (e10)ef* = 0
The expression ﬂleja + B9 + Bse 7 has magnitude |B'(ej9)| and phase angle a. The

phase angle « is expressed as:

(B — B3)sind
Ba + (B1 + Bs) cos b

tana =

(3.29)

A root lies on the unit circle if | B'(e7%)| = 1 (the ellipse touches the unit circle
in Fig. 3.4) and:

eI (n=1)0 ja _ 4

= —(n—-1)0+a==x2kr (k=0,1,--) (3.30)
o o+ 2k
<:>n—1_ n—1

As n gets very large, the expression 6 + 3—{“_"1- defines a set of parallel lines that forms
a dense grid since these lines are separated by a very small distance.

Assume that the ellipse just touches the unit circle at a point of tangency. At
this point, there is a unique o and # which may or may not satisfy Eq. (3.30). If the
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size of the ellipse is increased. there are two (a > b) or four (a < b) points at which
the ellipse intersects the unit circie (|B(e??)| = 1). As the ellipse emerges from
inside the circle, 6 splits into two or four angles corresponding to the now separate
points at which the ellipse intersects the unit circle. The angle # sweeps through
a range of values as the ellipse emerges. A root of the characteristic polynomial
will cross the unit circle before the ellipse emerges to any extent since there are a
large number of solutions to Eq. (3.30) when n is large. In the limit of large n, the
ellipse must lie entirely within the unit circle for all the roots of the characteristic
polynomial to lie within the unit circle in the z-plane. The sufficient condition
|B(eja)| < 1 actually becomes necessary and sufficient.

In the same fashion, it can be argued that as n gets large, the condition
|B(e7%)] < 1 is both necessary and sufficient for ensuring the stability of a 2 tap
pitch synthesis filter. However, the test for a 3 tap filter subsumes the 2 tap case.
Therefore, the test for a 2 tap filter becomes both necessary and sufficient in the
limit of large n.

It can be concluded that the stability test obtained for 2 and 3 tap pitch synthe-
sis filters is very tight considering that it is independent of n. This tight condition
was obtained by closely examining |B (6]‘0)| rather than being satisfied with the con-
dition >_; |3;] < 1. In the 2 tap case, the test |81] + |B2] < 1 is the tight condition.

The region in (f,82,03) space defined by |B1]| + |B2| + |B3] = 1 has eight
flat surfaces. Any set of coefficients within this region guarantees stability. The
boundaries of the region representing the necessary and sufficient conditions coincide

with some of the flat surfaces depending on the signs of 8y, f9 and (3. Consider

- 33 -



the situation when 8y and 33 have the same sign (a > b) and || + |Bs| + |B3] = 1.
If 81, B9 and B3 are all positive, the polynomial 1 — 2~ ™" B(z) has a root on the unit
circle. Then, 1 + B89 + 83 < 1 is a condition for stability and one of the boundaries
of the region representing the necessary and sufficient conditions coincides with one

of the flat surfaces. Two other instances when this phenomenon occurs are given

below.
1. If By >0, 81,03 <0 and nis odd, —f; + B2 — B3 < 1 is required for stability.

2. If B9 <0, B1,B3 > 0 and n is even, f; — B9 + B3 < 1 is required for stability.

The other boundaries of the region representing the necessary and sufficient
conditions asymptotically converge to the flat surfaces defined by |81|+ |82]+ 03| =
1.

If B; and B3 have opposite signs (a < b), no boundary of the necessary and
sufficient region is a flat surface. However, it has been shown that these boundaries
asymptotically converge to those defined defined by the tight sufficient test rather

than the test which simply compares the sum of the moduli of the coefficients with

1.

3.6 Pitch Filters With More Taps

Since the condition |B(e??)| < 1 is tight, it can be used to obtain a stability test
for pitch synthesis filters having more than 3 taps. Again, the test is independent
of the order n.

In the case of a 4 tap filter, D(z) = 2" — Byz% — B92% — B3z — B4. The stability
test 1s formulated in the same way as was done for 2 and 3 tap filters. Therefore,
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only an outline of the derivation is presented. The polynomial D(z) = 2" — B(z)

LM

and B(z) = $12° + Bo2® + B32+ B4 = z%(ﬂlz + ﬁzz% + ,332_% + ﬂ4z_%). Then:

- i38 0 0
B(e?’) = ¢’ (B + B4) cos 37 + J(B1 — B4) sin 37 @.31)
3.31
0 0
+ (B + B3) cos 5 + j (B2 — B3) sin 5]
If ¢ = 0/2 then,
B(e'?) = 73? B! (%) (3.32)
where _
B'(¢7%) = (81 + B4) cos 3¢ + j(B1 ~ ) sin 3¢
. (3.33)
+ (B2 + Bs) cos ¢ + j(Ba — B3} sin ¢.
Two functions Fj(¢) and Fy(¢) are defined as:
Fy(¢) = (By + B4) cos 3¢ + j(By — B4) sin 3¢
(3.34)

Fy(¢) = (B2 + B3) cos ¢ + j (B2 — Bs) sin .
Then, B'(¢/%) = Fy(#) + F2(¢). Now, F(4) again defines an ellipse with major axis
|82 + B3| or |8y — B3| depending on the signs of 83 and B3. The curve defined by
Fi(¢) is more complicated to describe but has some crucial properties. If |31+ 84| >
|81 — B4|, F1(¢) has a maximum magnitude |[§; + B4 at ¢ = %k (k =0,---,5)
and a minimum magnitude |B; — B4 at ¢ = ﬂ%ﬂl (k =0,---,5). Similarly if
|81 — B4| > |B1 + B4|, the angles that give the maximum and minimum magnitudes
are interchanged. If |83 + B3] is the major axis, Fy(¢) has a maximum magnitude

at ¢ = 0 and #. Similarly if |8; — B3| is the major axis, the maximum magnitude

occurs at ¢ = § and 37”

Using the substitutions a = |81+ 84, b = |81~ B4|, ¢ = |B2+ 03| and d = |B2— P3|,
four different cases occur. It is desired that when the curves described by Fy(¢) and
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Fy(¢) are added, the resulting curve lies entirely within the unit circle. Therefore,
|B(e7%)| = |B'(e7%)| = |Fy(¢)+ Fa(¢)] < 1. Ifa > band ¢ > d, the ellipse defined by
Fy(¢) has a maximum magnitude ¢ at ¢ = 0. At ¢ = 0, Fy(¢) also has a maximum
magnitude a. Therefore, a + ¢ < 1. The inequality b+ d < 1 is the condition when
a < b and ¢ < d. In either case, it must be checked that the sum of the moduli of
the coefficients is less than 1.

When a > b and ¢ < d, one must find the angle ¢ for which |B(e’?)| or more
conveniently |B(e’®)|? = |Fy(¢) + F5(¢)|? is a maximum and test whether this
maximum is less than 1. The two expressions Fj(¢) and Fy(¢) do not by them-
selves have a maximum magnitude at the same angle ¢. Now, |B(e/%)|2 = G(¢) =
(é cos 3¢ + ccos ¢)? + (bsin 3¢ + dsin ¢)%. To find the angle ¢ for which G(¢) is a

maximum, é—g;) set equal to zero. The resulting equation is:

de—gﬁ) = 3(b% — a®) cos 3¢sin 3¢ + (d% — c2) cos psin
+ (3bd — ac) cos 3¢ sin ¢ + (bd — 3ac) sin 3¢ cos ¢ (3.35)
=0

Using the relations cos3¢ = (2cos2¢ — 1) cos¢ and sin3¢ = (2cos2¢ + 1)sin ¢,
Eq. (3.35) simplifies to:

fl_Cdv‘((zs_qS) = 3(b2 — a2)(2cos 2¢ —1)(2cos2¢+ 1) + (d2 _ c2)

+ (3bd — ac)(2cos 2¢ — 1) + (bd — 3ac)(2 cos 2¢ + 1) (3.36)
=0
Equation (3.36) holds if ¢ # 0,5, 7 and 37” If¢=0,5,mor 3—” , it suffices to check

that a+¢ < 1 and b+d < 1 in the stability test. By letting 2 cos2¢ = z, a quadratic
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equation in z is formed.
g(z) = (3b? — 3d*)z? + (4bd — 4ac)z
+ (d% — ¢ — 3b® + 3a® — 2bd — 2ac) (3.37)
=0

There are two solutions z; and z9 resulting in two angles ¢; and ¢59. Since the
derivative of G(¢) is set to zero, one angle corresponds to its minimum value and
the other to its maximum value. One must check that max(G(¢1),G(¢2)) < 1.
Since 2cos2¢ = z, then —2 < z < 2. Also, G(¢) is not a constant function of ¢
and hence has a maximum and minimum value. Therefore, a solution of Eq. (3.37)
in the range —2 < z < 2 will exist. The same analysis holds for ¢ < b and ¢ > d.

The implementation of a stability test for a 4 tap filter is now given.

Stability Test

1. fa>band ¢> d OR a <b and ¢ < d, then:

(a) [B1] +1B2| +|Bs] + 84| <1
2. fa>band ¢ < dOR a <band ¢ > d, then:

(a) a+ec<1
(b) b+d<1
(c) Solve Eq. (3.37) for z to obtain ¢y and ¢¢ where:
arccos( %
¢1 = 2 ( 2 )
arccos(%2
¢2 — 5 ( 2 )

Then check that max(G(¢1),G(¢2)) < 1.

The test for a 4 tap filter is again tight but uses transcendental functions not
only to solve Eq. (3.37) but also to obtain the angles ¢ and ¢9 and continue
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to compute G(¢1) and G(¢2). If a stability test is formulated for filters having
more than 4 taps, transcendental functions will again be necessary. In a real time
environment, it may be better to use the condition }_; |5;| < 1 for filters with more
than 3 taps. However, pitch synthesis filters having more than 3 taps are not used
in practice. The stability tests given for 1, 2 and 3 tap filters are useful and can be

easily implemented in a real time environment.
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Chapter 4 Formant-Pitch Sequence

The performance of a pitch predictor is analyzed when it is placed after the
formant predictor in a CELP coder. First, a technique for estimating the pitch
period is introduced. Then, a stabilization technique for the unstable filters is for-
mulated. This results in a sub-optimum predictor which guarantees the stability
of the éorresponding pitch synthesis filter. The efficiency of the stabilization tech-
nique is evaluated in terms of the loss in prediction gain accompanying this process.

Finally, an algorithm that ensures the stability of pitch synthesis filters is presented.

4.1 Covariance Formulation

Given any prediction error filter A(z) of the form

A =1- 3 M, (4.1
k=1

the covariance formulation chooses the coefficients §; that minimizes the mean-

squared error of the output signal for any particular frame. The mean-squared
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2

error € is expressed as:

N-1
_y e
n=0
) » , (4.2)
= Z (dn - Z lBkdn-—Mk)
n=0 k=1
The signal d,, is the input signal (in this case the signal derived after formant

prediction) and e, is the output signal. The summation is over N samples where

N is the frame length. Minimizing 2 is equivalent to setting 42 — gfor k=1 to

dPBk
p. This leads to a linear system of equations,
.
Z Brd(My, M;) = (0, M}) for I =1 to p (4.3)
where
N-1
n=0
In matrix form, the above system of equations (#8 = a) is:
¢(My1, My) (M, Ma) -+ ¢(M1,My)] [ B #(0, My)
¢(Mg, My) ¢(My, M) - $(Ma,Mp) | | By | | #(0,My) (4.5)
QS(Mp,Ml) ¢(Mp’M2) tee ¢(Mp7 Mp) IBP d)(O?MP)

The matrix @ is symmetric and positive semi-definite although in practice it
is positive definite {18]. The Cholesky decomposition can be used to solve for the
predictor coefficients. In the 1 tap case, the equation ¢(M,M)B = ¢(0, M) must
be solved. When 2 taps are used, My = M and My = M + 1. For a 3 tap predictor,

Mi=M-1,My =M and Mg =M + 1.

4.1.1 Estimation of Pitch Period

Solving the above system of equations results in an optimum pitch predictor for
a particular value of M. However, the value of M (which is an estimate of the pitch
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period) must be determined.

Given that a speech waveform is sampled at 8 kHz (used in all experiments), the
pitch period is between 20 and 120 samples. This sets a minimum and maximum
value for M and covers the range for both male and female speakers. The true pitch
period is not necessarily an integral number of samples. However, M must be an
integer. A 3 tap predictor has an advantage over a 1 tap predictor in being able to
interpolate between samples. Atal [8] describes one method of estimating the pitch

period. A correlation array 7(M) is first calculated where:

o sl0M) |
M) = o0 (“9)

The correlation array is searched for local maxima and parabolic interpolation is
used on triplets of correlation values centered at the local maxima. Local peaks (not
necessarily integer values) are located at points at which the interpolated functions
are a maximum. The pitch period M is the nearest integer value of the largest local
peak. This value of M is used in conjunction with the covariance formulation to
determine the predictor coefficients. Minimizing the mean-squared error is done in
two steps, one involving the choice of M and the other involving the solution of a
system of linear equations.

Other pitch determination methods are also available. Lee and Morf [19] have
used least-square lattice variables to estimate the pitch period. This method has
been later used [20] in conjunction with a least mean-square transversal algorithm
to estimate the pitch predictor coefficients recursively. The only disadvantage of this
method is that errors in the pitch period estimate cause the predictor coeflicients
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to fluctuate rather than converge to steady-state values [20].

Now, an alternative to Atal’s method of choosing M is presented. First, the 1
tap case is considered. Then, A(z) =1 — BzM and g = %. Since this value

of B results in an optimum predictor, the resultant mean-square error &2 is:

2
e = $(0,0) — g(_z(w%')j (4.7)

One can choose M to maximize % This is equivalent to maximizing r2(M ).

To verify this claim, an experiment that compared the overall prediction gains
of the pitch predictor when choosing M according to Atal’s method and the new
method was conducted. The overall prediction gain is the ratio (in dB) of the
energy of the input signal to the pitch predictor (formed after formant prediction)
to the energy of the residual. Throughout the thesis, each speech file is split up into
frames of length 80 samples (10 ms). Also, a tenth order formant predictor whose
coeflicients are derived form the modified covariance methéd is used. The contents

of each speech file are given in Appendix C. The results are shown in Table 4.1.

The prediction gain achieved by the new method is the maximum attainable gain

2

. .. 2(0,M) . ..
because £ reaches its minimum value when 2°(0,M) is maximized. In contrast

¢(M,M)
to Atal’s method, no parabolic interpolation is used in the new method. Now, a

method for choosing M in the case of a 2 and 3 tap filter is presented.
In the case of a 3 tap filter, the equation #8 = a is solved. Then, 8 = & 1a and

the resulting mean-squared error is €2 = #(0,0) — ﬁTa. The value of M should be

chosen so as to maximize ﬁTa. For notational convenience, @ and a are expressed
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| Speech File | Atal’s Method | New Method
CATMS | 415 4.16
ADDMS 4.00 4.01
PIPMS 3.46 3.47
TOMFS 6.03 6.06
OAKFS 2.56 2.59
THVFS 4.75 4.78

Table 4.1 Prediction Gains (dB) Depending on Choice of
M (1 Tap)

as:

[ ¢(M —1,M - 1) ¢(M—-1,M) ¢(M-1,M+1)
o= QS(MaM_l) ¢(MaM) ¢(MaM+1)
(M +1,M—-1) ¢(M+1,M) $(M+1,M+1)

-*Tfl g4 ZIs

= | T4 IT9 ITg (4.8)
| 5 T T3
r¢(07M - 1) a1
o= ¢(0,M) = a9
_¢(0,M + 1) (833

Since f = o la, ﬂTa = L((l%l where:

_ 2 2 2 2
fzi, 04) = of(zazs — 26) + o3(zy23 — 25)+
2 2 2
aj(z1zg — o) + 201 09(z6T5 — T3T4)+
(4.9)
2&10[3(134.’1:6 — $2$5) -+ 2a2a3(z4z5 — .’131:136) and
— 2 2 2
det ® = zyz973 — T)Tg — T3Ty + 2T4T5Tg — T9Th
Maximizing such an expression involves a great deal of computation in each frame of
speech. Therefore, certain approximations must be made. Since formant prediction

has been accomplished, the near-sample-based redundancies have been removed to

a large extent. Therefore, the off-diagonal terms (z4,z5 and z4) in the matrix @ can
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be neglected. Now, f(r;,e;) = a%:cﬂg + a%xlzg + a%xlzz and det @ = x z973.

Bla

il

2 2 2

of L og o

LS

| T2 T3

¢%(0, M — 1)

¢*(0, M)

¢%(0, M +1) (4.10)

M -1,M-1)

$(M, M)

= $(0,0)(r*(M — 1) + (M) + r*(M + 1))

d(M+1,M +1)

The value of M that maximizes 72 (M -1)+ 2 (M) + 72 (M + 1) is chosen.

The derivation for the 2 tap case is similar. In this case, the value of M that

maximizes 7% (M)+72(M +1) is chosen. Experimental results are given in Tables 4.2

and 4.3. In these tables, results derived from an exhaustive search are also shown.

An exhaustive search of the value of M in each frame is performed by finding the

predictor coeflicients for each value between 20 and 120, filtering the signal to form

the residual and measuring the prediction gain. The value between 20 and 120 that

gives the highest prediction gain is then chosen as the value of M. Such a search

should never be done in practice but is performed here just to compare it with

Atal’s method and the new method. The exhaustive search reveals the maximum

attainable prediction gain.

Speech File Atal’s Method New Method Exhaustive Search
CATMS8 5.66 5.68 5.69
ADDMS 5.22 5.23 5.24
PIPMS 4.68 4.75 4.78
TOMEF38 6.86 6.88 6.89
OAKFS8 3.37 3.44 3.45
THVFS8 5.90 5.96 6.00

Table 4.2 Prediction Gains (dB) Depending on Choice of

M (2 Tap)
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o Speech File A-‘;l_;s‘i)[ethod Ne\;/ Method Exhaustive Search |
CATMS 5.94 6.20 6.26
ADDMS 5.47 5.62 5.67
PIPMS 5.00 5.21 5.25
TOMF8 7.11 7.24 7.37
OAKF8 3.50 3.70 3.77
THVFS8 6.13 6.27 6.38

Table 4.3 Prediction Gains (dB) Depending on Choice of M (3
Tap)

The new method of choosing M consistently shows a higher prediction gain
than Atal’s method and serves as a good compromise between Atal’s method and
the exhaustive search. If no approximations were made in choosing the value of M
that maximizes ﬂTa, the achieved prediction gain would be the same as the gain

derived from the exhaustive search. A feasible alternative to Atal’s method has

been formulated.

4.2 Stabilization of the Pitch Synthesis Filter

The pitch predictor coefficients can be calculated by using the new method of
choosing M and the covariance formulation. This approach does not guarantee the
stability of the corresponding pitch synthesis filter. Using the stability test derived
in Chapter 3, a stabilization technique is employed.

In each frame of speech, the predictor coefficients are calculated. Then, the
stability test is used to determine whether a stable synthesis filter results. If the
filter is found to be stable, no modification of the coefficients is made and the
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optimality is preserved. Otherwise, each coeflicient is scaled by a common factor
¢ to force the synthesis filter to be stable. This stabilization technique will be

optimal in that ¢ is calculated so as to minimize the loss in prediction gain of the

pitch predictor.

4.2.1 Theoretical Development

Solving the system &8 = a results in an optimum predictor. After scaling by
a factor ¢, the vector of predictor coefficients is B/ = ¢f = B + 6. This results in a

sub-optimum predictor [3] where the energy of the output signal e? is:
e? = $(0,0) — 287+ BT op
= $(0,0) — 2(8T + 6T)a + (BT + 6T)0(8 + 6) (4.11)
= (4(0,0) — 28T a+ BT®B) + (BT®6 + 67 0B — 26T a) + 6T @6
The minimum mean-square error resulting form an optimum predictor is E?nin =
#(0,0) — ZﬂTa + ﬁTQﬁ. Continuing the above derivation gives:
e2=¢2. +(BT06 + 670 — 26T a) + 6706
=elin+ (07 ')T06 + 6Ta — 26T a) + 6706 (4.12)
=cki +6706
Since @ is positive definite, 67®6 > 0. The quantity 6736 represents the excess
mean-squared error resulting from the sub-optimum predictor. Since § = (¢ — 1)8,
gf —el. = (c— 1)2ﬂTq5ﬂ. In minimizing (¢ — 1)2,3Td5ﬂ, it is observed that as ¢
deviates further away from 1, the loss in prediction gain increases. Therefore, ¢

must be as close to 1 as possible and at the same time stabilize the pitch synthesis
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filter. It can be shown that 0 < ¢ < 1 can assure a stable synthesis filter. If ¢ < 0,
a stable filter can arise but the loss in prediction is more than if 0 < ¢ < 1. In
this stabilization technique, it is assumed that the value of M is unaltered although
the algorithm used in choosing it makes use of the fact that &8 = . Scaling the

predictor coefficients shrinks the magnitude of the poles of the system.

1 Tap

In a 1 tap filter, the only requirement on the coefficient § is that |8| < 1. Also,
¢ must be as close to 1 as possible. If § > 1, scaling it such that it becomes equal
to 1 makes ¢ as close to 1 as possible and ensures marginal stability. Similarly, if

B < —1, its new value should be equal to -1. The stabilization technique used is:

,3/ N {+1 ifg>1 (4.13)

-1 ifB< -1

2 Tap

In a 2 tap filter, the scaling factor ¢ must force |31] + |32} to be at most equal
to 1 in order to achieve marginal stability. Therefore, the value of ¢ which gives

marginal stability is:

P (4.14)
Bl + B2 '

3 Tap

In a 3 tap filter, ¢ = |B; + B3] and b = |B; — B3|.- When a > b, ¢ must force
|B1]| + |B2] + |B3] to be at most equal to 1. The formula for ¢ which gives marginal
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stability is:

= - (4.15)
© T 1B+ 1Bal + 183 '

When a < b, the stability test as derived in Chapter 3 is:

2. (a) e+ B2 <1
(b) b2 + B2 < 1
(¢) (i) b* < a® + a|By] or
(i) f(6%) =b* +b2(B2 —a? - 1)+a®> <0

For unstable filters, |8y| + |f2| + |B3] > 1 and s = m can always be
used as a scaling.factor. But, a value of ¢ > s that is derived from the tighter test
can be found. Since ¢ > s, the loss in prediction gain when using ¢ is less than or
equal to the loss when using s.

Assume that the stability check is violated. In the stabilization procedure, it
must first be checked whether or not b2 < a? + a|B2|. This condition is equivalent to
checking cosvy < 1. Note that scaling the coefficients does not alter this relationship.
If b2 < a2 +4a|f3], marginal stability is achieved when the stability test ellipse for the
scaled coefficients is tangent to the circle with siny = 0. The appropriate scaling

factor then forces
cla+|Bs]) =1 (4.16)

or

1

Under these conditions, it is straightforward to show that all points along the major
axis of the scaled stability test ellipse lie inside the unit circle (condition 2. (b)) when

the minor axis is inside the circle (condition 2. (a)).
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Now, if b2 > a? + a|By|, there is a point of tangency for the scaled ellipse (for
some ¢, 0 < ¢ < 1) for which 0 < |y| < . For that value of ¢, the quadratic stability

function (f(b?) in condition 2. (c) (ii)) with scaled coefficients is equal to zero.
Aot 4+ 202 (282 — c%a® — 1) + c2a? =0 (4.18)

The solution ¢ = 0 is not admissible, giving:

2 _ 42
¢ = b*—a (4.19)
bt + 232 — b2a?
With this value of ¢, it can be shown that all points along the minor and major

axes of the scaled ellipse are within the unit circle (conditions 2. (a) and 2. (b)

respectively are satisfied). The entire stabilization procedure is summarized in

Table 4.4.

Conditions Scaling Factor ¢
> 1
©2b BT
a <b and b? < a? + a|By| a—+]75—2—|
2
a <b and bz>a2+a|ﬂ2| \/E‘i-i——b%ﬂ%(f_—b—zaf

Table 4.4 Stabilization Procedure for 3 Tap Filters

4.2.2 Experimental Results for Stabilization

Theoretically, marginal stability has been assured. In practice, complete stabil-
ity is desired. Therefore, in the case of a 1 tap filter, 8’ is set to 0.99 or -0.99 to
ensure complete stability. The stabilization procedure for 2 and 3 tap filters assures
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marginal stability in ’the sense that sometimes the ellipses in Figs. 3.3 and 3.4 are
tangent to the circle. Calculating ¢ as required and subtracting a very small quan-
tity € will assure complete stability. Table 4.5 shows the experimental results when
the stabilization algorithm is applied to a 1, 2 and 3 tap filters. The prediction
gains recorded when no stabilization was performed correspond to those achieved
by the covariance formulation. When stabilizing 2 and 3 tap filters, ¢ is computed
as required and the minute quantity ¢ = 0.001 subtracted from it.

In 1, 2 and 3 tap filters, the average loss in prediction gain associated with
stabilization is 0.03, 0.26 and 0.21 dB respectively. This loss is a very small sacrifice
especially if stability is guaranteed. Speech files having male voices show a higher

loss in prediction gain as compared to those having female voices.

4.3 Lattice Structured Pitch Predictor

Lattice methods have been employed in linear prediction and are useful in imple-
menting a lattice structured formant predictor [21]. A lattice structured predictor
consisting of p stages is an all-zero filter as depicted in Fig. 4.1. The input signal is
d(n) and the final error signal is fp(n) = e(n). Any stage ¢ has a reflection coefficient
K; and forms both the forward residual f;(n) and the so called backward residual
b;(n). The minimization of the mean-square value of the forward and/or backward
residuals is accomplished stage by stage such that after each stage, the mean-square
value is reduced. Techniques that minimize only the mean-square value of the for-

ward or backward residual alone are available. However, neither of these methods
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Speech File No Stabilization | After Stabilization
1 Tap
CATMS8 4.16 4.12
ADDMS 4.01 3.95
PIPMS8 3.47 3.41
TOMF8 6.06 6.03
OAKF8 2.59 2.57
THVFS 4.78 4.77
2 Tap
CATMS 5.68 5.34
ADDMS 5.23 4.89
PIPMS8 4.75 4.37
TOMFS8 6.88 6.59
OAKF8 3.44 3.38
THVFS8 5.96 5.78
3 Tap
CATMS8 6.20 5.83
ADDMS 5.62 5.36
PIPMS 5.21 4.88
TOMFS8 7.24 7.13
OAKF8 3.70 3.62
THVFS8 6.27 6.19

Table 4.5 Prediction Gains (dB) With and Without

Stabilization

ensure that the magnitude of the resulting reflection coefficients is bounded by 1,

thereby not assuring the stability of the corresponding synthesis filter.

To assure the stability of the synthesis filter at the outset, the Burg method is
used. This algorithm, at each stage, minimizes the sum of the mean-square values of

the forward and backward residuals and each reflection coefficient K; is calculated
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o fp(n)=e(n)
0
d(n) —
-1 -1
Zz . . z
b (n)
0
Fig. 4.1 All-Zero Lattice Filter
as,
2C;_1(n)
K, = -1 4.20
i = Fiy(m) + By (n— 1) (4:20)
where
N-1
C’L—l(n) - fz—l(n)bz—l(n - 1)
n=0
. N-1 0
Fiq(n)= ), f{Z4(n) (4.21)
n=0
N-1 X
Bi_y(n—1)= > bf_;(n—1)
n=0

By using this method, the new mean-square values of the forward and backward

residuals are given by:

Fy(n) = (1— K})F,_y(n)
(4.22)
Bi(n) = (1— K?)B;_4(n—1)

Since this method works well for a formant predictor, the purpose here is to apply
this technique in developing a lattice implementation for a pitch predictor. The
stability of the corresponding pitch synthesis filter is guaranteed at the outset and
hence, no stabilization procedure is necessary. The next section compares this
method to the stabilization technique described in the previous section.
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When implementing a 1 tap pitch predictor. the value of the pitch period M 1s
first determined, the reflection coeflicients K, for ¢ = 1 to M — 1 are set to zero and

K s is given by:
Ky = 2Cp-1(n)
M= Fpoi(n) + By—1(n—1)
_ 2¢(0, M)
~ $(0,0) + $(M, M)

(4.23)

The transfer function of the prediction error filter is A(z) = 1 — KMZ_M. Since
K; =0fori=1toM-1, fpr_1(n) = fp_2(n) = --- = fo(n) = d(n) and
brr—1(n — 1) = by(n — M) = d(n — M). The resulting mean-square error % of the

forward residual is:

= (1 - K3/)Fy1(n) | (4.24)

B 4¢2(0, M) .
=1 60,0 + o001, a2 P41

¢%(0,M)

The value of M that minimizes €2 also maximizes KJZM O (5(0.0)+é(M M)?" The

choice of M (or equivalently the estimate of the pitch period) when implementing a
1 tap lattice filter is not necessarily the same as that when using a 1 tap transversal
filter. In the case of a transversal filter, the value of M that maximizes 72(M) is
chosen. The experimental results obtained when using the Burg methpd are shown
in the next section since it is compared with a stabilized filter. An experiment
involving the choice of M that maximizes 72(M ) in conjunction with the lattice
structured predictor was also performed. An average difference in prediction gain
of only 0.02 dB was found when the two methods of choosing M were compared.
Obviously, the choice of M that maximized KJ2V! consistently revealed a higher
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gain. This shows that even when using the Burg method, using the value of M that

maximizes 72(M) is a feasible choice.
Estimating the pitch period is an issue for 2 and 3 tap filters. In a 2 tap filter,

K, =0for :=1to M — 1 and two reflection coefficients Kj3s and Ks,1 are to be

determined. The resulting mean-square error is:

e?=(1-K3)(1 - K3 1)Fy_1(n)
(4.25)
=(1- K3 — K.+ K3 K3 ) Fp—1(n)

Theoretically, choosing the value of M that maximizes K12VI + K]2\4+1 — K_?MK%{H_I

26(0,M

« e 2 _
results in the minimum value of €“. The formula Ks = 510.0)+¢ (M, M) has already

been developed. After the Mth stage, the forward and backward residuals are given

by:
fu(n) = fy—1(n) — Kpbpyy—1(n — 1)

= d(n) — K pyd(n — M)

(4.26)
by(n) =by—1(n—1) — Ky fy—1(n)
=d(n — M) — Kpd(n)
Then, K/, is computed as,
_ 2Cp(n)
Byt = B )+ B (n = 1) (427)

where

Cr(n) = $(0,M +1) — Kprop(M, M + 1) — Kpr6(0,1) + K3r6(1, M)

Fp(n) = $(0,0) — 2K 3,6(0, M) + K2,6(M, M) and - (4.28)

By(n—1)=¢(M +1,M +1) —2Kp,6(1, M + 1) + K3,6(1,1)
Maximizing KJZVI + K]2\4+1 — KJZMK]ZM+1 involves a great deal of computation and
is not practically feasible. Even though the near-sample-based redundancies have
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been removed, not many terms can be neglected. In view of this difficulty, a method
for estimating the pitch period is derived empirically.

When determining the value of M for 2 tap filters, it must be ensured that the
overall prediction gain must be consistently higher than the 1 tap case. This can be
guaranteed by choosing M in the same way as for the 1 tap filter and implementing
two lattice stages having coefficients Kj; and Kjs, ;. Since maximizing T2(M)
was feasible in the 1 tap case, it should be determined whether or not maximizing

73(M) + 72(M + 1) is useful for a 2 tap filter. Three different methods for choosing

M as shown in Table 4.6 were investigated.

Method Choice of M Non-zero Coefficients
1 max(r%(M) + r2(M + 1)) Ky and Kppaq
2 Same as 1 Tap Case Kps and Kppyq
3 Same as 1 Tap Case Kjyr_1 and Ky

Table 4.6 Methods of Choosing M in 2 Tap Lattice Predictors

Although only method (2) theoretically guarantees a higher overall prediction
gain than a 1 tap filter, all three methods consistently showed a greater gain. Fur-
thermore, method (1) consistently showed the highest prediction gain which was
on the average 0.60 and 0.36 dB more than methods (2} and (3) respectively. A
final test compares method (1) with an exhaustive search. An exhaustive search,
for each value of M between 20 and 120, finds the reflection coefficients, filters the
input signal, measures the prediction gain and then finally selects the value of M
that gives the highest gain. The comparison is done to determine how effective the
proposed method is since an exhaustive search reveals the maximum possible gain
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that can be realized. The average difference between method (1) and the exhaustive

search is just 0.12 dB making it the method of choice.

Speech File Method (_1)_ Exhaustive Search
CATMS 5.05 5.14
ADDMS 4.96 5.04
PIPMS8 4.28 4.43
TOMF8 6.95 7.09
OAKFS8 3.43 3.49
THVFS8 | 5.80 6.02

Table 4.7 Prediction Gains (dB) for 2 Tap Lattice Predictor

Estimating the pitch period for a 3 tap predictor must again be done empirically.
All of the methods considered are given in Table 4.8. Methods (1), (2) and (3)
will show higher gains than their 2 tap counterparts because of the stage by stage
minimization procedure. Since it has been decided that method (1) should be used

for 2 tap filters due to its good performance, it is anticipated that this method will

perform well for 3 tap predictors.

Method Choice of M Non-zero Coefficients
1 max(r? (M) + (M + 1)) - | Kyp, Kppiq and Kpgyo
2 Same as 1 Tap Case Ky, Kppyq and Kpgpyo
3 Same as 1 Tap Case Kpr_1, Ky and Kppyq
4 max(r2(M — 1) + 73(M) + 72(M + 1)) | Kpr_y1, Kpr and Kpppq

Table 4.8 Methods of Choosing M in 3 Tap Lattice Predictors

Experimental evidence indicates that method (4) is definitely not useful and
method (1) again consistently gives the best performance. In fact, the performance
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using method (1) is superior to both methods (2) and (3) (on the average) by
0.58 and 0.12 dB respectively. Finally, results that compare method (1) to the
exhaustive search are shown in Table 4.9. An average difference of just 0.28 dB
renders method (1) as a good technique. To summarize, one must choose M that
maximizes 72(M) 4+ 72(M + 1) and let the Mth stage be the first with a non-zero

reflection coeflicient for both 2 and 3 tap predictors.

Speech File Method (1) Exhaustive Search
CATMS 5.30 5.66
ADDMS 5.24 5.37
PIPMS 4.55 4.79
TOMFS8 7.11 7.52
OAKF8 3.86 4.03

~ THVFS 6.25 6.59

Table 4.9 Prediction Gains (dB) for 3 Tap Lattice Predictor

The 2 and 3 tap prediction error filters derived from the Burg method do not
have exactly the same transfer functions as those derived from the covariance for-

mulation. The transfer functions are given by:

2tap A(2) =1+ Ky Ky~ — Kpypz ™ — Kpppqz (MY

3tap A(2) =1+ (KpKpgn + K1 Kpi0)z '+ KyKpyp12 2 — Kyz ™

—(M+1) —(M+2)

— (Kpq1 + Ky Kpp 1 Kppi0)z ~ Kpri92

(4.29)
The difference is due to the presence of 2! and 272 terms. In spite of this difference,
an extremely good performance is achieved and as shown in the next section, the

amplitude of the pitch pulses are greatly reduced. The main purpose of a pitch
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predictor 15 to shrink the pitch pulses.

A computationally efficient procedure called the covariance-lattice method [21],
calculates the reflection coefficients using Eq. (4.20) but expresses it in terms of
the covariance of the input signal. This efficient algorithm is applied in formant

prediction and can also be used in pitch prediction.

4.4 Comparison of the Three Methods

Two mgthods that guarantee the stability of a pitch synthesis filter are pro-
vided. One approach uses the stability test formulated in Chapter 3 to modify the
predictor coefficients derived form the covariance formulation. The other approach
implements a lattice structured predictor such that at each stage, the magnitude of
the reflection coefficient is bounded by 1. This section compares these two methods
with the covariance formulation in an attempt to decide whether or not one of the
approaches is clearly better than the other. The prediction gains are tabulated in
Table 4.10.

When utilizing a 1 tap predictor, use of the stabilization technique consistently
shows a higher gain than the lattice method. However, in 2 and 3 tap filters,
the same statement does not hold. In 2 tap filters, the lattice method shows a
higher average gain of 0.02 dB. In 3 tap filters, the situation is reversed since the
stabilization technique reveals a greater average gain of 0.12 dB. The differences are
definitely very small and hence, both methods are feasible. In some speech files, the
lattice method outperforms the covariance formulation mainly because the transfer
functions of the two predictors are different.
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Speech File Covar;a;éElAA}terSt:ayli;—aﬁon Lattice Predictor
1 Tap
CATMS 4.16 4.12 3.84
ADDMS 4.01 3905 3.81
PIPMS 3.47 341 3.20
TOMFS 6.06 6.04 5.89
OAKFS 2.59 2.57 2.50
THVFS 4.78 477 4.67
2 Tap
. CATMS 5.68 5.34 5.05
ADDMS 5.23 4.89 4.96
PIPMS 4.75 4.37 4.28
TOMFS 6.88 6.59 6.95
OAKF8 3.44 3.38 3.43
THVFS 5.96 5.78 5.80
3 Tap
CATMS 6.20 5.83 5.30
~ ADDMS 5.62 5.36 5.24
PIPMS 5.21 4.88 4.55
TOMFS 7.24 7.13 7.11
OAKF8 3.70 3.62 3.86
THVFS 6.27 6.19 6.25

Table 4.10 Comparison of the Prediction Gains (dB) for Each

Figure 4.2 shows six plots of which the first two are the speech waveform TOMF8
and its energy in each frame. Plots (3), (4) and (5) show the prediction gains in each
frame when the covariance formulation, stabilization technique and lattice method
are used to implement a 3 tap predictor. In plot (6), frames in which unstable
pitch synthesis filters are present are indicated when the function value equals 10.

As expected, the prediction gains are much higher in the voiced segments. Plots

Method
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showing the prediction gains all follow approximately the same contour.

Figure 4.3 shows different waveforms during frames 97 to 104. Waveforms (1)
and (2) depict the original signal TOMF8 and the formant predicted residual. Wave-
forms (3), (4) and (5) are the residuals formed after pitch prediction when the
covariance formulation, stabilization technique and lattice method are employed.
This section of the speech waveform was chosen since frames 97 to 101 had unsta-
ble pitch synthesis filters when the covariance approach was used. All the pitch
predicted residuals have a much lower energy than the formant predicted residual

and no pitch pulses of significant amplitudes remain.

4.5 Effect of Instability on Decoded Speech

This section examines how unstable pitch synthesis filters affect decoded speech.
A CELP coder was simulated using 3 tap pitch filters. After formant and pitch
prediction, each residual was compared to a dictionary of 210 = 1024 Gaussian
waveforms. The comparisons were made over blocks of data of length 40 samples.
The spectral weighting factor used was 0.8 (value of « as described in section 2.1.1).
Figure 4.4 depicts four waveforms of which the first is the original signal CATMS
and the next three are decoded signals when using.the covariance formulation, sta-
bilization technique and lattice method. Plot (5) indicates frames having unstable
filters.

All three decoded waveforms are distorted due to quantization noise filtered by

Hp(z) and Hp(z). If Hp(z) is unstable, the energy of the noise is enhanced and
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causes further degradation as observed in waveform (2). Although a perceptual test
showed that all of the decoded signals were intelligible, waveform (2) suffers from
pops or clicks that can be annoying. Also, background noise is more dominant in
portions of waveform (2) than in waveforms (3) and (4).

Degradations in the output speech is perceptible if a sequence of consecutive
frames of high input energy have unstable filters or if the numerical value of 3_,; |5;]
is high. Frames 77 to 88 consist of high-energy voiced speech and have unstable
pitch synthesis filters. The quantization noise continues to build up causing the
energy of the output signal to keep rising. This background noise is perceptible.
Although‘ the average value of Y ;|B;] is just 1.3, distortion is present since this
segment has a high input energy. Figure 4.5 shows the original and output signals
during frames 75 to 90. The rising energy in waveform (2) is clearly visible.

Certain isolated frames of high input energy having unstable filters also demon-
strate a rising output energy (frames 38 to 50). Frames 38 and 39 have filters whose
value of Y, |3;| equals 2.36 and 2.46 respectively. These big values are responsible
for some distortion. This distortion continues since frames 41, 42 and 44 have
unstable filters where 3, |3;| equals 1.45, 1.57 and 1.54 respectively.

The degradation is not serious when unstable filters with low values of Y, |5;]|
are present in frames of relatively low energy. This situation occurs during frames
127, 128 and 129 in which X, |3;| equals 1.11, 1.53 and 1.35. If an unstable filter
with a very high value of }°;|8;| occurs even in a frame of low input energy, an
impulse-type distortion that is heard as a pop or click is present. Frames 149 and
150 with values of Y_; | 5;| equal to 4.43 and 2.70 clearly depict this. Another example
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of this phenomenon is during frames 196 to 198. Here, 3, |5;| equals 2.37, 4.02 and
2.23. Figure 4.6 shows the input and decoded signals during frames 195 to 200.
The distortion which is visible in waveform (2) has spread to frame 199 and a clear
pop sound is heard. No glaring distortion is present in waveforms (3) and (4).
Since stable pitch synthesis filters do not cause as much perceptible distortion
as unstable filters, it is highly recommended that they be used. The stabilization
technique and lattice method guarantee stability and generate decoded signals (3)
and (4) as shown in Fig. 4.4. Perceptually, waveforms (3) and (4) are highly intelli-
gible and do not sound much different. Neither has the undesirable pops, clicks or
enhanced background noise. Waveform (4) appears to have a lower overall energy
than waveform (3). Another difference is that the pitch pulses in waveform (4)
sometimes have lower amplitudes than the pulses in waveform (3) as can be seen in
Fig. 4.5 (this phenomenon does not occur over the entire speech signal). However,

these differences cause no perceptual effect. Therefore, any of the methods that

achieves stability can be used.
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Chapter 5 Pitch-Formant Sequence

In contrast to Chapter 4, a pitch predictor which precedes a formant predictor
in a CELP coder is now considered. Stability and performance analyses are again
performed with the objective of comparing this arrangement (P-F sequence) with
the previous configuration (F-P sequence). This investigation enables one to deter-
mine which sequence is to be preferred. In particular, the comparisons focus on 3

.tap pitch predictors.

5.1 Stability and Performance Issues

Estimating the pitch period M when the pitch predictor is applied directly to
the speech signal cannot be done in the same way as before. The only exception
is the 1 tap case where the pitch period is the value of M that maximizes 7’2(M )
For a 3 tap predictor, the approximations that were previously made no longer hold
and an exact choice of the best M can be computationally heavy. Since the value
of M chosen in the 1 tap case is a reliable estimate, it can be used in conjunction

with the covariance formulation to implement a 3 tap filter.
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Experimental evidence indicates that both the formant and pitch predictors
achieve a high gain (actual results given in next section). An exhaustive search
of the value of M that maximizes the gain of the pitch predictor (or simply pitch
gain) only shows an average improvement of 0.45 dB. In some speech files, the
corresponding gain of the formant predictor (formant gain) decreases. Therefore,
the total gain (sum of pitch and formant gains) does not always improve and on
the average, is nearly the same.

An exhaustive search of the value of M that maximizes the total gain is also
performed. When compared to the covariance formulation, the pitch gain is consis-
tently reduced and the formant gain increased such that an average improvement of
only 0.91 dB results. The two experiments involving an exhaustive search suggest
that by choosing M to only maximize the pitch gain may sometimes diminish the
total gain. Obviously, selecting M in order to maximize the total gain is a complex
problem and does not achieve a significant improvement. Therefore, the proposed
method of determining the pitch period is feasible.

A pitch filter used in a P-F sequence is more susceptible to instability than when
used in a F-P arrangement. As mentioned in Chapter 3, frames in which the input
energy show a sudden increase usually give rise to an unstable filter. The original
speech waveform (input to the pitch predictor in a P-F sequence) has a higher input
energy that shows greater variations from frame to frame than the residual after
formant prediction (input signal in F-P sequence). When using a F-P sequence, an
average of 23% of the frames had unstable pitch synthesis filters. In a P-F sequence,
the number increased by more than a factor of 2, namely 49%. This is almost half
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of the total number of frames processed.

When discussing stability, the parameter Y ; |5;| is important since as its value
increases, the loss in prediction gain associated with stabilization also increases
and if the filter is not stabilized, more distortion is introduced in the decoded
speech. In frames having unstable filters, the number of occurrences of the value
of 32;|B;| between 1 and 5 (in steps of 1) and greater than 5 are shown in Fig. 5.1
by a histogram. The data was gathered by using the six speech files employed
throughout the thesis.

In both the F-P and P-F configurations, the value of Y, |3;| is mostly between
1 and 2 when an unstable filter arises. In a P-F sequence, the number of frames in
which 7, |3;| > 5 is approximately five times more than in a F-P sequence. Also,
the number of occurrences of the value of Y ;|3;| in any bin of the histogram is
consistently higher in a P-F arrangement. A clear disadvantage of the P-F configu-
ration is that the pitch filter becomes unstable more often. As revealed in the next
section, the loss in prediction gain due to stabilization also increases.

A lattice structured predictor derived from the Burg method can be utilized.
The pitch period is determined by a technique that is different from the one used
in a F-P sequence. Again, a reliable algorithm must be determined experimentally.
In a 1 tap lattice predictor, selecting the value of M that maximizes uz(M) =

2
400 Oq;jt(g’(AA?M)P is theoretically, the best approach. Choosing M in this fashion

and adding two lattice stages guarantees a higher pitch gain. Also, choosing the
value of M that maximizes 7% (M) is worth investigating. Four different approaches
as given in Table 5.1 were examined.

- 70 -



500 - . , .
8 400 |
a
[<¥)
5
=
S 300}
o
[y
(@)
S
2 200f
&
=3
-
100 |
1
0 1 1 A1 —r
1 2 3 4 5
i 163l
(a) F-P Sequence
500 ; . .
3 400 |
=
Q
=
3
S 300}
o
oy
o
S
= 200}
g
=3
Z,
100
1
0 ] d ] i
1 2 3 4 5

i |8l
(b) P-F Sequence

Fig. 5.1 Histograms of the Value of >, |5;]

Only methods (2) and (4) are feasible to implement. Method (4) shows only a

slightly higher total gain than method (2) and is preferred since it is consistent with
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Method | Choice of M | Non-Zero Coefficients
1 max(7%(M)) | Kps_y, Kpr and Kppoq
2 max(r2(M)) | Kpr, Kproq and Kppyo
3 max(p?(M)) | Ky, Ky and Ky
4 max(u?(M)) | Kpr, Kpoq and Kpgpo

Table 5.1 Techniques to Estimate Pitch Period (3 Tap Lattice)

the optimal solution for a 1 tap lattice predictor. When performing an exhaustive
search of the value of M that maximizes the pitch gain, the total gain consistently
improves but only by an average of 0.45 dB. An exhaustive search of the value of M
that maximizes the total gain shows an average increase of only 0.95 dB. Therefore,

method (4) performs well.

5.2 Experimental Results

Table 5.1 shows all the results (prediction gains) obtained for a P-F sequence
and the total gain achieved by a F-P sequence. The F-P arrangement consistently
reveals a higher average gain of 1.8, 2.0 and 1.5 dB when using the covariance,
stabilization and lattice algorithms respectively. Even from a performance point of
view, the F-P configuration is more advantageous than its P-F counterpart. The
prediction gains may be interpreted as being rather high. This is because in a CELP
system, the input signal is predicted from its actual previous samples rather than
the reconstructed samples which are used in an APC coder.

In a P-F sequence, stabilization of the pitch filter results in average loss of
2.6 dB (much more than in the F-P case}. But, a high percentage of this loss
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i Speech File Covariance Aftelh‘VStabilization Lattice Predictor

CATMS8 Pitch 7.86 6.37 9.63
Formant 8.87 9.89 6.86

Total (P-F) 16.7 16.3 16.5

Total (F-P) 18.4 18.0 17.5

ADDMS Pitch 7.80 6.32 8.87
Formant 7.51 8.92 6.14

Total (P-F) | 15.3 15.2 15.0

Total (F-P) 16.9 16.7 16.5
PIPM8 Pitch 6.91 5.17 9.19
Formant 8.56 10.12 6.09

Total (P-F) | 15.5 15.3 15.3

Total (F-P) 18.4 18.1 17.8
TOMF8 Pitch 18.29 15.22 18.52
Formant 7.08 9.63 5.88

Total (P-F) 25.4 24.9 24.4

Total (F-P) 25.8 25.7 25.6
OAKF8 Pitch 12.56 9.57 15.77
Formant 8.52 11.43 6.55

Total (P-F) | 21.1 21.0 22.3

Total (F-P) |  23.7 23.6 23.9
THVF8 Pitch 14.80 10.76 16.91
Formant 8.31 11.39 6.64

Total (P-F) 23.1 22.2 23.6

Total (F-P) 24.8 24.7 24.8

Table 5.2 Complete Experimental Results

is retrieved in the formant gain such that the total gain is almost equal to that
obtained originally. The lattice predictor reveals a higher pitch gain than the other
methods because of the 27! and 272 terms in its transfer function. Due to some

removal of the near-sampled based redundancies, the corresponding formant gain

is lower than that obtained by the other methods.
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An examination of the final residual signals provides additional insight. Two
examples consisting of seven plots are shown. The first plot shows the original
speech waveform. Plots (2), (3) and (4) depict the residual waveforms when the
covariance, stabilization and lattice methods are used in a F-P sequence while (5),
(6) and (7) illustrate their counterparts in a P-F arrangement. Figure 5.2 consists
of the same segment as Fig. 4.4 but magnifies the residuals by a factor of two.
Pulses of much higher amplitudes are present when a P-F arrangement is employed
suggesting that a F-P sequence is more effective in removing pitch pulses. This
phenomenon consistently occurs during many portions of different residuals formed
by filtering various speech waveforms.

Another observation that explains the loss in pitch gain associated with sta-
bilization is illustrated by another example (Fig. 5.3). This figure shows frames
103-123 of the signal OAKFS8. In this segment, only frames 115 and 116 have stable
pitch filters in a P-F arrangement. By comparing plots (5) and (6), it is observed
that stabilization sometimes magnifies an already existing pulse (frame 120) and
introduces pulses of significant amplitudes (frames 104 and 108). This is one main
reason behind the substantial loss in pitch gain due to stabilization. Obviously, the
corresponding increase in formant gain has no effect in removing pitch pulses.

Plot (7) in Fig. 5.3 depicts a residual in which pitch pulses of high amplitudes
are absent. This characteristic obtained from the lattice method occurs in some
portions of different residuals suggesting that if a P-F sequence is employed, the
Burg algorithm should be chosen in preference to the other two. The speech seg-

ment shown in Fig. 5.3 was chosen in order to simultaneously explain the effects
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Fig. 5.2 Residual Waveforms (Example 1) (1) Speech Data, (2)
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of stabilization and illustrate a certain characteristic associated with the lattice
method.

As an overall conclusion, it is highly recommended that a F-P sequence be used
in a CELP coder. This is partly due to the better performance it achieves and
its effectiveness in removing redundancies in the speech signal. In a F-P sequence,
stabilization of the pitch filter is very effective and the Burg method is extremely
useful. In a P-F configuration, the pitch filter becomes unstable more often and

makes stabilization virtually ineffective.

5.3 Coding Considerations

Coding the formant and pitch predictor coefficients for transmission is an im-
portant issue. The formant predictor coefficients are usually first transformed into
reflection coeflicients or line spectral frequencies (LSFs). When dealing with re-
flection coefficients, the use of log-area ratios has been shown to have excellent
quantization properties [22] in view of their spectral sensitivity. The use of LSF's is
also very promising since they show a lower average distortion than log-area ratios
and achieve a 30% reduction in bit rate [23,24]. A computationally efficient method
of computing LSFs that requires no evaluation or storage of trigonometric functions
involves the use of a series expansion in Chebyshev polynomials [25]. Quantizing
log-area ratios or LSFs preserves the stability of formant synthesis filters. The
use of vector quantization combined with tree searching is also feasible. Vector

quantization subsumes any scalar technique and hence, stability can be preserved.

- 76 -



DSP 25-FEB-86
Time waveforn, File = VENUS_DATA1: [AUDI0DATAIDAKFS. AUD;

m 10 E ¥ ] L)
Ao
104 108 .12 FRAES 116 120
2000 . , Tt'ne uavefolm. Fule' = HSCI]O(I?DUAE:[RA\'II.PITFORIJ]ORIG'P.NP; .
1000} ]

e e e L e s S I
-1000} .
_2000 i ] i (] —l A 1 |1 L i

104 108 .ol FRAES 116 120
2000 l i} Tl.t'l'Q uavefon'n. File z HSClJOOS(')lm:[RﬂV]I.PITF(]m]'ORKFPSTB.TAUD; .

_2000 1 i i 1 i ] il | 1 ’I
104 108 .. 12 FRAES 116 120

2000 . ' TLNTQ uavef‘on:n. File z HSCUOOSII]UAE:[RRV{.PITFOM]IORIG'PLRT.@; .

1000} :
-1000} .
_2000 1 ] 1 [l L L 1 ] i i

104 108 112 FRAES 116 120
2000 . . D.ne uavef?m. Ftlg = HSCOO?SDW:[R@V].PITFOFEHJORK.NQ; .
1000 | :
of 19
-1000} .
_2000 i ] 1 - | 1 -k 1 i 1 A
104 108 L 112 FRAES 116 120
2000 Tu'ne uavefos-n. Ftle|= HSCGOUS'DW:an‘l.PITFURHIJORKSTB.PéD; .
1000}
oM 6
-1000}
_2000 ] | L %] 1 | ] ' i b
104 108 112 TRAES 116 120
2000 . . Tu'ne uavefou:n. Ft\el= HSCI)O[!S'DmE:[Rﬂ\tl.PlTFomlomnT.ﬂ}D; '
1000} ' ;
UMMM‘WWWWW 7
-1000} ]
_2000 A 1 1 1 1 1 A i y A
104 108 112 FRAES 116 120

Fig. 5.3 Residual Waveforms (Example 2) (1) Speech Data, (2)
Pitch Predicted Residual for Covariance Formulation
(F-P), (3) Pitch Predicted Residual for Stabilization
Technique (F-P), (4) Pitch Predicted Residual for
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Pitch Predicted Residual for Lattice Method (P-F)
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The ideas for coding pitch predictor coefficients form a set of recommendations
for future research. Since this thesis studies both the stability and performance
of pitch filters, coding the coefficients is the next logical step. Any method of
quantization should preserve the stability of the pitch synthesis filter. Therefore,
the use of vector quantization is very promising. The codebook used would not
contain any entry whose coefficients do not guarantee stability. This is equivalent
to the stabilization algorithm introduced in Chapter 3. The optimality criterion
involves the minimization of the mean-square error €2 = sfn-m + 6706, Thérefore,
6T ®6 must be minimized. Since formant prediction has been accomplished, (valid
assumption due to superiority of F-P sequence), the off-diagonal terms in the matrix
@ can be neglected. Therefore, the entry in the codebook that minimizes a weighted
mean-square distance is chosen. If the diagonal terms in @ are treated as being
approximately equal, the expression 676 or simply the Euclidean distance between
the entry in the codebook and the vector of predictor coefficients is minimized. In
the case of formant predictors, more complicated distortion measures are employed.
Tree searching can be used to diminish the computational burden.

Scalar quantization of the coefficients has been accomplished by Atal [6]. It
involves a transformation of the coefficients as shown in Table 5.3. This approach
provides no guarantee of stability. Any set of coefficients can be stabilized using
the algorithm presented in Chapter 4 and then quantized to preserve stability. The
quantization scheme must be designed very carefully.

Other new methods of scalar quantization are now suggested and start by col-
lapsing the polynomial Ap;y,(2) = 1 — 512—(M—1) — Boz M _ ﬂgz—(M+1) to a
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Parameter . ”Min_ir;l»;inﬁkMaxiﬁmm Bits
log(B1 + B2 + B3) —1.2 1.2 5
B1 + Bs -1.0 . 1.0 4
B1 — Bs —1.0 1.0 4

Table 5.3 One Method of Scalar Quantization

third degree polynomial Ag(z) =1 — 827! — 9272 — B3273. Assuming that one
commences with a set of coefficients that ensure the stability of the pitch synthesis
filter (verified by sufficient test in Chapter 3), a set of reflection coefficients or LSFs
corresponding to A3(z) can be computed. After quantization, the new parameters
ensure that the roots of As(z) are within the unit circle. The same cannot be said
of Apri1(2). The stability test formulated in Chapter 3 is independent of the order
of the filter and should be utilized in order to design a quantization scheme that
keeps the roots of Ajsy1(2) within the unit circle. These methods of quantizing
reflection coefficients (or log-area ratios) and LSFs should be compared with Atal’s
approach especially to see if the bit rate is reduced.

Quantizing the log-area ratios generated from the Burg technique is very useful
since after quantization, the magnitude of the reflection coefficients are still bounded
by 1. Therefore, if the Burg rﬁethod is used to realize a lattice structured predictor, -
preserving stability after quantization is no problem. Also, Makhoul has shown
that quantization can be accomplished as an integral part of the covariance-lattice

algorithm since minimization of the output energy is done stage by stage [21].
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Chapter 6 | Conclusion

The use of pitch filtering in a speech coder is highly beneficial. Redundancies
that are not removed by a formant predictor are removed by a pitch predictor.

The direct form coefficients of a pitch filter are calculated by a system of linear
equations derived by minimizing the mean-square error. This does not ensure the
stability of the pitch synthesis filter placed at the receiver. The stability of this filter
can be checked by the Schur-Cohn test described in Appendix A. A new test for 1,
2 and 3 tap filters is proposed. The test is based on a set of coefficient conditions,
independent of the order of the filter and sufficient to ensure a stable pitch filter.
The test imposes a negligible computational load on the coder and does not involve
any evaluation of transcendental functions. It is also shown that as the order of the
filter keeps increasing, this sufficient condition becomes asymptotically necessary
and sufficient. Since the order of a pitch filter is very high, the suflicient condition
is very tight.

Before obtaining the direct form predictor coefficients, the pitch period must
be known. First, a F-P (formant-pitch) sequence is examined. A new method of

estimating the pitch period is proposed. This method is formulated by minimizing
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an approximation to the mean-square prediction residual. The prediction gain is
consistently higher than when using Atal’s method of pitch estimation.

When a pitch filter is found to be unstable, a convenient stabilization technique
based on scaled coefﬁgients which minimizes the loss in prediction gain is developed.
Each predictor coefficient is multiplied by a factor ¢ in order to reduce the magnitude
of the poles of the filter such that they lie within the unit circle. The loss in
prediction gain resulting from stabilization is negligible.

The Burg algorithm is applied in realizing a lattice structured pitch predictor.
Here, the stability of the pitch synthesis filter is guaranteed at the outset. For 2 and
3 tap filters, an efficient algorithm that estimates the pitch period for this structure
is derived empirically. This avoids a huge computational burden resulting from a
theoretically optimal approach. Excellent prediction gains are achieved.

The effect of unstable pitch filters on decoded speech is perceived as the en-
hancement of quantization noise. A gradual growth of noise is audible when a
series of frames in a voiced segment have unstable filters. An impulse-type distor-
tion perceived as a pop or click occurs when one or two frames have unstable filters
whose value of 3_;|8;| is very high. This type of distortion can occur even in a
relatively low energy portion of the speech signal.

A CELP coder having a P-F (pitch-formant) arrangement is compared to that
possessing a F-P configuration. Estimating the pitch period is done in a different
manner in a P-F sequence. Therefore, techniques of estimating thg pitch period
depend on the filter structure (transversal or lattice) and on the configuration used
at the analysis stage (F-P or P-F). A F-P sequence is clearly superior because of the
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higher overall gain it achieves and its effectiveness in removing pitch pulses. Also,
the pitch filter in a P-F sequence is more susceptible to instability.
As an overall conclusion, the coder should use the F-P sequence and stable

synthesis filters should be available at the receiver. This results in decoded speech

of high quality.
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Appendix A. Schur-Cohn Test

The Schur-Cohn test [12,13] can be used to determine whether or not the roots
of a polynomial D(z) = ap + a1z + -+ - + a,2"™ are within the unit circle.
A sequence of polynomials Dy(z) = D(z), Dy(z), ---, D_1(2) are defined such

that:

Dji1(z) = agj)Dj(z) — agz -zn_jDJ-(z_l) forj=0ton-1 (A.1)

In this recursion, az(-o) = q,, the original coefficients of D(z).
From the above equation, it is deduced that since D]-(z) is of degree n — 7,

D;(1(#) is at most of degree n —j — 1. Also, the coefficients of D (2) are derived

from those of D;(z) by the relationship:

ascj—H) = a(()j) ascj) - a,:zj n—j

aj)-_k fork=0ton—j5—1 (A.2)

At any stage j, the constant coefficient of D]-(z) is a,(]) = 6; such that at the next

stage:
J+1 7)12 7) 32
b =af ) =12~ o) ] (A.3)
A set of necessary and sufficient conditions for the roots of D(z) to lie within the

unit circle is 6; < 0, 69 > 0, ---, 6, > 0. This is equivalent to the set of conditions:

o) < 1ol

1) > o]
(A.4)

Y] > falr Y]
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A.1 Application to Pitch Filters

A 2 tap pitch synthesis filter has a denominator polynomial:

D(z) = M* — Bz — By
(A.5)
= ag\(/)f)+le+1 + ago)z + ago)

When using the Schur-Cohn test, the first stage in the recursion (j = 0) produces

only three non-zero coeflicients, namely, agl), agl) and af,;f). At stage j of the

recursion, only the coefficients agj +1), agj +1) and aS\J;_IJ) need be computed. When

J = M — 1, only two coefficients agM) and agM) are derived and the condition
|a(()M)| > |agM)| is tested.

The denominator polynomial of a 3 tap pitch synthesis filter is:

D(2) = 2M*1 — 8,22 — Byz — B

(A.6)
= aggf)ﬂzMH + ago)zz + ago)z + aéo)

This test is again very convenient since at each stage j, only five non-zero

coefficients exist. These coefficients are a(()1+1) +1) U+ G+1) and a('1+1)

R I B I V g | M—j-

When 7 = M — 4, the computed coefficients are naturally ordered from agM_g) to
(M-3) L .

ay . Then, the number of coefficients is reduced by one at each successive stage

and the test terminates when the last condition |agM)| > |a§M)| is examined.
For pitch synthesis filters, the Schur-Cohn test is extremely simple to imple-

ment. The implementation can be generalized to an [ tap filter whose denominator

polynomial is:

D(z) = aSSI)HzMH + al(g)lzl_l + e+ a(lo)z + a(()o) | (A.7)

In this case, a maximum of 2] — 1 coefficients must be calculated at each stage in

the recursion.
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Appendix B. Properties of Quadratic Stability Function

To derive the properties of f(b2), again assume that 33 and (3 have opposite
signs. The substitutions a = |y + B3| and b = |31 — B3| are used and b > a. The
angle v is the angle at which a point of tangency occurs as is shown in Fig. 3.4(b).
Also, assume that the necessary conditions, ¢+ 32 < 1 and b2 +ﬂ% < 1 are satisfied.
The quadratic function f(b%) = b% + b?(B2 — a® — 1) 4 a? is examined. Now,

f(0) = a® > 0, the parabola is convex up and the roots are:

b%zz (a2+1—ﬁg)i\/(zﬂ%—az—l)z—élaz (B.1)

. . .. 2
The roots b% and b2 are real. This requires that the discriminant (8% —a®> —1)"-

4a? be positive or zero.
ﬂz—a2~12—4a2>0<::> B2 —a?—1|>2a B.2
2 2

Now, |82 —a? — 1| = 1+ a? — 32 since f2 +b% < 1 and a < b. Continuing the above
2 2 2

derivation gives:
182 —a? —1| > 20 <= |a— 1| > 64 (B.3)
Since a + B2 < 1, la— 1} =1 — a. Now:

la =12 By <= 12a+p; (B.4)

From the necessary condition a + 89 < 1; the proof is complete.

If the smaller of the two roots (a? 41 — 2) — \/(ﬂ% —a? - 1)2 — 4a? is positive
(ignoring the division by 2), both roots are positive. It has been shown that a? +

. 85 -



. 2 . .
1- ﬁ% and (ﬁf —a% - 1)" - 4a? are by themselves positive. Therefore:

(a? +1 - B2) —\/(ﬁg—a2—1)2—4a2 >0
— (a*+1- 5%)2 > (B2 —a® — 1)2 — 4a® (B.5)
<= 4¢* >0
The proof is complete since the last inequality is true.
The function defines a convex parabola with two positive roots b% and b%. Fur-
thermore, f(b%?) < 0 for b2 < b2 < b3. Since 0 < || < % to achieve tangency,

therefore 0 < cos~y < 1. This requires that

afs
O0< ——=— <1 B.6
brznax —a? ( )
or
b?nax > afy + a’. (B.7)

Evaluating f(afB2 + a?) gives:
f(aBz + a®) = (aPy + a*)* + (aPy + a*) (83 —a* — 1) + &°

= afa((a+ B2)* — 1) (B.8)

<0
The last inequality follows from 0 < a + B9 < 1. Since, brzna,; > afly + a® and
f(aBs + a2) < 0, the only permissible root is b%. The quantity bpax = bg is the
value of b for which the ellipse is tangent to the circle. For the ellipse to lie entirely
within the circle, b < by ax.

The vertex of the parabola is found by letting the first derivative of f (bz) with

respect to b be equal to 0. The vertex occurs at b2 = (a% + 1 — #2)/2. The point
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aBy + a? comes to the left of the vertex on the horizontal axis as shown below:

2 2
+1—
aBy + a2 < ﬁ___z__ﬂz <= a+fy<1 (BQ)

The proof is complete since a + §9 < 1 is true by the assumed necessary condition.

Finally, a plot of f(b?) is shown.

2
= afe + a

b12nax = b%

Vertex

b2

Fig. B.1 Plot of f(b?) versus b
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Appendix C. Contents of the Speech Data Files

The speech data files used in the experiments conducted contain different sen-
tences as given below. The first three sentences are spoken by male speakers and
the last three are spoken by females.

CATMS: Cats and dogs each hate the other.

ADDMS8: Add the sum to the product of these two.

PIPMS&: The pipe began to rust while new.

TOMF8: Tom’s birthday is in June.

OAKF&8: Oak is strong and also gives shade.

THVFS8: Thieves who rob friends deserve jail.
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