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Abstract

The transmission of speech and audio over communication channels has always required

speech and audio coders with reasonable search and computational complexity and good

performance relative to the corresponding distortion measure.

This work introduces a coding scheme which works in a perceptual auditory domain.

The input high dimensional frames of audio and speech are transformed to power spectral

domain, using either DFT or MDCT. The log spectral vectors are then transformed to

the excitation domain. In the quantizer section the vectors are DCT transformed and

decorrelated. This operation gives the possibility of using diagonal covariances in modelling

the data. Finally, a GMM based VQ is performed on the vectors.

In the decoder part the inverse operations are done. However, in order to prevent neg-

ative power spectrum elements due to inverse perceptual transformation in the decoder,

instead of direct inversion, a Nonnegative Least Squares Algorithm has been used to switch

back to frequency domain. For the sake of comparison, a reference subband based “Exci-

tation Distortion coder” is implemented and comparing the resulting coded files showed a

better performance for the proposed GMM based coder.
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Sommaire

La transmission de la parole et de l’audio sur des canaux de communication a toujours

exigé des codeurs de la parole et de l’audio avec une recherche et complexité d’exécution

raisonnable et d’une bonne performance relative à la mesure de déformation correspondante.

Ce travail présente une méthode de codage qui fonctionne dans un domaine auditif

perceptuel. Les fenêtres d’entrée de dimensions élevés de la parole et de l’audio sont

transformées au domaine de la puissance spectrale, en utilisant soit la DFT ou la MDCT.

Les vectors spectraux logarithmiques sont alors transformés au domaine de l’excitation.

Dans la section du quantificateur, les vecteurs sont transformś et décorrelés en utilisant

la DCT. Cette opŕation donne la possibilité d’employer des covariances diagonales pour

modeler les données. En conclusion, un VQ basé sur GMM est exécuté sur les vecteurs.

Dans la partie du décodeur, les opérations inverses sont faites. Cependant, afin d’empêcher

les éléments négatifs du spectres de puissance dus à la transformation perceptuelle inverse

dans le décodeur, au lieu d’utiliser l’inversion directe, un algorithme du moindres carrés

non-négatifs a été employé pour commuter au domaine de la fréquence. À des fins de

comparaison, un ” codeur de déformation d’excitation ” basé sur une référence sous-bande

est implèmentè et ensuite comparè à l’algorithme proposé. Les fichiers codés résultants ont

montré une meilleure performance pour le codeur proposé, basé sur les GMM .
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Chapter 1

Introduction

Building coders with acceptable search and computational complexity that provide good

performance for a given distortion measure has always been the goal of coder design. The

ability to train a coder based on a set of data and to find a proper distortion measure are

among the key issues in this design.

In this chapter the concepts of Audio Coding, Vector Quantization and Source Modelling

are overviewed and different existing classes of audio coders are explained briefly. Finally

the motivation for the work done in this thesis is discussed.

1.1 Source Coding

Source coding is a branch of Information Theory which has been first introduced by Claude

Shannon in 1948. Source coding, tries to solve the problem of representing a source in the

best way. In this theory a source of information is modelled using a stochastic process.

The messages are the outcomes of this stochastic process and are produced according to a

certain probability [6].

The basic block diagram of a source coder is depicted in Figure 1.1. The encoder maps

Decoder Channel Encoder
n
x

n
x,1 ,2 ,

...
n n n l
b b b

,1 ,2 ,
ˆ ˆ ˆ...
n n n l
b b b

Fig. 1.1 Block Diagram of an Encoder Decoder scheme

each of the symbols xn to a sequence of bits bn = b1,n...bl,n. This sequence is then passed
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through the communication channel and the resulting sequence b̂n = b̂1,n...b̂l,n is decoded

to x̂n at the other end.

1.2 Audio Coding

Audio coders are generally divided in to three classes; parametric coders, hybrid coders

and waveform coders. Parametric coders do not tend to reconstruct the waveform of the

original signal. Instead, they code some parameters of the signal, send them and finally

reconstruct the signal. This class of coders works at low bit rates at the expense of losing

some performance precision. Waveform coders, try to generate a compressed signal which

has a waveform similar to the original signal. They have better performance, but need

higher bit rates.

1.2.1 Classes of Audio Coders

In the following the performance of these coders will be further briefly explained.

Parametric coders, vocoders or source coders model the input source with a few

parameters. For speech signal, there has been a good representation, which models the

vocal tract as a time varying filter. This filter is excited by a source which is modelled

using a white noise source (for unvoiced signal) or a sequence of responses (for voiced

signal).

Waveform coders, try to reconstruct the waveform of the original signal. These

coders work well for coding of audio signals, because there are no good models which rep-

resent the audio source. In terms of the signal domain these coders lie in to two categories:

Time domain and frequency domain.

• Time domain coders: The coding is done on the time samples of the signal. Some

examples of this type of coding are [7]: Pulse Code Modulation (PCM), Adaptive

Pulse Code Modulation (APCM), Differential Pulse Code Modulation (DPCM), Delta

Modulation (DM), Adaptive Delta Modulation (ADM) and Adaptive Predictive Cod-

ing (APC).

• Frequency Domain Coders: The coding is done on the frequency samples of the

signal. These coders produce coded speech with a higher quality than time domain

coders. However, this is at the expense of a higher complexity [8]. One advantage of
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Input Speech

+
Excitation

Vector

Info Info.

( )A z( )
L
A z

Spectral Shaping

Filter

Pitch synthesis

filter ( )s n

( )s n

-

Info.

Perceptual

weighting filter

Fig. 1.2 Block Diagram of a CELP coder [1]

frequency domain coders over time domain coders is their ability to consider factors

relating to human perception. Perceptual models of human hearing have been well

modelled in the frequency domain. Therefore, if we use frequency domain coders we

can benefit from this fact in the design of our coder.

Frequency domain coders fall in to two categories: subband coders and transform

coders. Subband coders use bandpass filters to code the input signal in different

frequency bands. Transform coders, use some specific transform on the frames of the

input data. Perceptual audio coding is done using transform coders [9]. Some of the

benefits of using this scheme are: compacting the signal energy into fewer coefficients,

decorrelating the data coefficients and ease of using perceptual distortion measures.

Hybrid coders, tend to use both the benefits of waveform coders and parametric

coders. They extract the parameters of the input signal and send it. Hybrid coders as well,

transmit an error signal which is the difference between the input and output signal after

the extraction of parameters.

An example of the most successful Hybrid coders for speech is Code Excited Linear

Predictive (CELP) coder. Figure 1.2 depicts the block diagrams of a CELP coder. The

two synthesis filters are used to model the long and short term parameters of speech. The

parameters of these filters are determined using a perceptually weighted difference between

the input and output signals.

1.2.2 Perceptual Audio Coding

Perceptual audio coders use the concept of Auditory masking threshold to quantize the sig-

nal. They use a transformation to represent the spectrum of the signal. Using this spectrum

and models of human perception, the masking threshold is determined for different bands.
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The bit assignment is then done using these thresholds and finally after multiplexing the

quantized parameters with side information a bit stream is produced. Block diagram of

a generic audio coder is given in Fig. 1.3. The lossless entropy coding system is able to

perfectly reconstruct the samples of the original signal from the coded representation.

Quantization

and

Encoding

Time/Frequency

Analysis

Bit Allocation

Entropy

(Lossless)

Coding

Psychoacoustic

Analysis

M

U

X

( )s n

side info.

Params.

to channel
Masking

Thresholds

Params.

Fig. 1.3 Generic perceptual audio coder [1]

1.3 Vector Quantization

The problem of source coding refers to the ways of converting a source to a sequence of bits

and sending them over a communication channel and then reproducing the sent signal. In

speech communication distortion in the reproduced signal is tolerated to some extent. The

amount of distortion is determined by the bit rate or the number of bits used to represent

the source signal.

1.3.1 Quantization

Quantization is referred to as the process of approximating a continuous signal by a set of

discrete values. Vector Quantization in contrast to scalar quantization, jointly quantizes the

multiple signal values which are called vectors. In Vector Quantization (VQ) applications,

the quantizer design is usually based on training with a set of representative training vectors

[10]. VQs are described by a set of codewords. Codeword is a set of fixed vectors which is

used to reproduce the quantized signal. The input vectors which are to be quantized are

compared to the vectors in this set and matched to each one. The index of the codeword

which minimizes the distortion measure is sent over the channel. Vector Quantization is

one of the most efficient source coding schemes, which reduces the number of bits needed

to represent the signal or in other words compresses the data.
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1.3.2 Distortion Measures

A distortion measure d is the cost defined for quantizing a vector x with a vector x̂. The

most widely distortion measure used between the input vector x and the output vector

x̂ is the squared error or squared Euclidean distance between the two vectors. Weighted

squared error is an example of another distortion measure which uses a matrix W as the

weighting matrix for the distance and the distance between two vectors x and y is defined

as d(x,y) = (x− y)tW(x− y).

The number of vectors in a code book determine the size of that code book. The size

of the code book also shows the number of partitions in the codebook. For a codebook of

size M the d-dimensional space of the original vector x is divided to M cells, and each of

the cells corresponds to a codeword vector. The representation of VQ as a Look-up table

is shown in Figure 1.4.

x

Input Vector

Search

codeword

index

2C

K
C

M
C

k  codeword

index

Code Book

1C

Fig. 1.4 Vector Quantization

The search for the nearest vector is done exhaustively, by finding the distance between

the input vector and each of the codewords and the one with the smallest distance is coded

as the output. This process is shown in Fig. 1.5.
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Input Vector Code Book
Nearsest

Neighbor

Distance

Measure

x

2
( , )d Cx

( , )
K

d Cx

( , )
M

d Cx

1arg

min{ ( , )}

j M

j

k

d Cx

1( , )d Cx

k

2C

KC

MC

1C 1

2

  3

M

Fig. 1.5 VQ codeword selection

1.4 Statistical Source Modelling

VQs are usually designed using an empirical model. The goal in this design is training a

codebook from a set of training vectors [10]. One problem happening here, is the size of

the training set, which should be relatively large to the codebook size [11], otherwise the

problem of over-fitting will be encountered, which is explained in Chapter 3. Therefore, the

need to predict the possible training vectors arises here. Knowing the probability density

function (pdf ) of the vectors in this set, we can solve this problem.

1.4.1 Gaussian Mixture Modelling

It is usually impossible to model the distribution of speech or audio signal using a standard

density function like a Gaussian. On the other hand, the family of finite mixture densities

are one type of distributions, usually used for this parameter estimation. Recently a VQ

design has been proposed in [4]. This scheme, in contrast to previous coders does not

use the traditional training, instead it designs the VQ using the parameters obtained by

modelling the pdf of the input speech signal. This transform coding scheme uses the first

and second order statistics of the signal to normalize and decorrelate it. It finally uses

scalar quantization for the individual decorrelated coefficients.
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1.5 Description of Thesis Work

In this thesis we have implemented a new coder in the excitation domain. The aim is to

minimize a perceptually defined distortion measure. Therefore, the human perception is

considered in defining the distortion measure which will give a higher quality of regenerated

signal at a lower bit rate.

Using proper transformation on the spectrum of the signal, a representation of the signal

in the Excitation Domain will be given. This transformation includes the outer/middle ear

filtering and frequency spreading. The transformed vectors are in the excitation domain.

The GMM-based quantization scheme used here, benefits from the coding scheme pro-

posed in [4], however we have quantized high dimensional excitation patterns instead of

using low dimensional LPC coefficients. The main contribution here, will be the use of a

perceptual distortion measure and at the same time diminishing the quantizer complexity

by the use of Gaussian Mixture Models in training the data.

Since high dimensional data vectors are used, we take advantage of using the GMM

based VQ in order to exploit the statistical dependency between different elements of a

frame. Use of high dimensional data vectors leads to need for building bigger training data

bases. We also had to made slight modifications to the EM algorithm using the method

proposed in [12].

Another difference between our scheme and the one proposed in [4] is that we have used

both speech and narrow band audio signals in a data base in order to train a set of Gaussian

Mixtures for implementation of the quantizer. Therefore, we could use the quantizer for

the coding of both narrow band audio and speech files. However, we need a higher bit rate

than speech for audio to have the same acceptable quality.

The majority of audio coders introduced in literature are doing the process in a sub-

optimal way in the sense that, they divide a quantity in power spectrum domain by the

masking which is defined in the excitation domain. The current coder avoids dealing

with quantities in different domains by using the perceptual transformation which will be

discussed in Chapter 2.

The other important issue to be considered is the invertibility of the perceptual transfor-

mation. Johnston has introduced this concept in [13]. In this work a perceptual transform

coder is introduced. The power spectrum components are convolved with a spreading func-

tion to switch to the excitation domain. A noise masking threshold is then subtracted
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from the spread critical band spectrum which gives the spread threshold. The necessity of

inverting the spread threshold back to Bark domain is mentioned in Johnston’s work. The

trouble here is that after subtracting the masking threshold, the resulting components in

the excitation domain are no further invertible to power spectrum domain, since an offset

has been subtracted from the original value. Johnston proposes a renormalization process

to compensate for the effect of spreading function. In this case, the deconvolution is very

unstable and may result in negative power spectrum, therefore it can not directly be used

as the inverse transformation. This concept has been discussed more in [14].

The same problem may occur in the design of a quantizer which works in the excitation

domain. This means, using the inverse pereptual transform we may no longer wind up with

positive power spectrum values, since the quantized values are different from the original

values. Therefore, we may wind up with negative power spectrum elements. In order

to avoid this problem we have used a Non Negative Least Squares algorithm to find the

best approximation to the inverse function of the excitation transformation. The details of

implementation are further discussed in Chapter 4.

Finally, an Excitation Domain (ED) reference coder has been implemented and its

performance is evaluated and compared to the proposed coder.

The basic idea behind the GM quantizer given here is the use statistics of the vectors to

build a transform coder, decorrelating the data using these statistics and benefitting from

the perceptual properties of speech in defining the distortion measure.

1.6 Thesis Organization

This thesis consists of 5 chapters. Chapter 2 will be a discussion on the concepts of Percep-

tual audio coding. We will briefly review the concepts of frequency domain to excitation

coding, critical bands, masking threshold, time frequency filter banks and other related

ideas used in perceptual audio coding. We will then, explain how the perceptual transfor-

mations could be used in order to change the domain in which we are coding and switch

to a domain called the Excitation Domain. The main contribution of this work is that, the

coding is done in a different domain which considers human perception.

Chapter 3 will introduce the concept of statistical modelling, Gaussian Mixture Models

and their use in the world of speech coding. GMM-VQs will be explained and we will go

over a literature review of the works done using the GMMs in the world of speech coding
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and pattern recognition.

Chapter 4 discusses the new speech/narrow band audio scheme that has been intro-

duced in this work. The ideas behind using Gaussian mixtures to model the data and

perceptual transformation to transform data vectors have been discussed. The results of

our implementations have been included in this chapter. We have also implemented an Ex-

citation Domain (ED) reference coder based on subband coding and iteratively changing

the step size of the quantizer, in Appendix A.

Finally, Chapter 6 will be an overview and conclusion of the work that has been done.
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Chapter 2

Perceptual Audio Coding

2.1 Principles of Psychoacoustics

In order to have an optimum fidelity for audio and speech coders there is a need for

coders to optimize their performance relative to the human ear. Most current audio coders

compress the signal using the fact that “irrelevant” signal information will not be perceived

by listeners [2]. The irrelevant information is identified using psychoacoustic principles such

as absolute thresholds of hearing, critical band frequency analysis and different types of

masking. Using these psychoacoustical notions along with signal quantization theory, the

concept of perceptual entropy has been introduced. Perceptual entropy can be used to

determine a fundamental limit of transparent audio compression.

In order to have a better understanding of hearing threshold we have to define a metric

to quantify the audio intensity. This metric which is called sound pressure level (SPL)

gives the level of sound in (dB) compared to a reference level, i.e. LSPL = 20 log10(p/p0)

dB. LSPL is the SPL of a stimulus [15], p is the sound pressure in Pascals and p0 is the

reference level which is 20 µPa.

2.1.1 Absolute Threshold of Hearing

The absolute threshold of hearing is the least amount of energy needed in a pure tone at a

specific frequency such that a listener can detect the tone. It is reported in [2] that Fletcher

has given a formula for the frequency dependence of this quantity. The approximation to
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this quantity is given by a nonlinear function [16]

Tq(f) = 3.64(f/1000)−0.8 − 6.5e−0.6(f/1000−3.3)2 + 10−3(f/1000)4. (2.1)

Figure 2.1 is a graph of this threshold versus frequency.
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Fig. 2.1 The absolute threshold of hearing in quiet

2.1.2 Critical Bands

The absolute threshold of hearing is not the only factor that is considered in the coding

context. When we have a spectrally complex quantization noise, the detection threshold

will depend on the stimuli at any time. Therefore, this threshold is a time varying function

of the input signal. The performance of the ear in spectral analysis is of considerable

importance here. A frequency to place transformation occurs in the cochlea along the

basilar membrane [15]. Mechanical movements are transformed to travelling wave in the

cochlea. For sinusoidal stimuli, the travelling wave on the basilar membrane propagates

from the oval window until a region which has the same resonant frequency [2]. At this point

the magnitude increases to a peak and this location is called “characteristic frequency”.

From a signal processing perspective, in this transformation the cochlea can be viewed as

a bank of overlapped bandpass filters. The magnitude responses are nonuniform functions

of frequency. Besides that, the filter passbands have nonlinear bandwidths which increase

by frequency. The “critical bandwidth” is a function of frequency that measures the width
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of the cochlear filter passbands. There have been many interpretations of critical bands.

One interpretation is the perceived level of a noise. For a narrowband noise the perceived

loudness remains constant for a constant SPL even when the noise bandwidth is increased

up to the critical band width. If we increase the bandwidth beyond the critical bandwidth,

the loudness begins to increase. Another notion is the audibility threshold of a narrowband

noise masked with two tones. The detection threshold for the noise remains constant as long

as the frequency separation between the tones is within one critical bandwidth. Beyond

this bandwidth the threshold rapidly decreases.

Critical bandwidths are constant up to 500 Hz. In practical systems it is useful to treat

ear as a bank of discrete filters. Table 2.1 gives such a filter bank.

Table 2.1 Critical band filter bank [5]

Band Center Freq. Bandwidth Band Center Freq. Bandwidth
No. (Hz) (Hz) No. (Hz) (Hz)

1 50 0–100 14 2150 2000-2320
2 150 100–200 15 2500 2320–2700
3 250 200–300 16 2900 2700–3150
4 350 300–400 17 3400 3150–3700
5 450 400–510 18 4000 3700–4400
6 570 510–630 19 4800 4400–5300
7 700 630–770 20 5800 5300–6400
8 840 770–920 21 7000 6400–7700
9 1000 920–1080 22 8500 7700–9500
10 1175 1080–1270 23 10500 9500–12000
11 1370 1270–1480 24 13500 12000–15500
12 1600 1480–1720 25 19500 15500–
13 1850 1720–2000
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A distance of one critical band is called “a Bark”. The function

g(f) = 7 sinh−1(f/650) (2.2)

is usually used to convert from frequency in Hertz to the Bark scale. In addition to

the representation in Table 2.1 there are alternative expressions for critical bandwidth.

Specifically, the equivalent rectangular bandwidth (ERB) which has been used after the

results of research directed toward measurement of auditory filter shapes. The models

used here are called Rounded exponential models. These models are obtained by fitting the

masking data with parametric weighting functions which represent the spectral shape of

the auditory system. We have implemented the smearing functions which are used for the

frequency to excitation domain transforms using this model which is also called “roex”. A

single parameter “roex” is given as,

W (g) = (1 + pg)e−pg (2.3)

where W is the smearing function, g is the normalized frequency and is equal to |fc−f |
z

,

fc is the center frequency, f is frequency in hertz and z is the bark frequency. This

filter representation is in the symmetric form. The experimental ERB measurements for

roex models have been given by Moore and Glasberg in [17] and [18]. The details of the

parameters used in our implementation are discussed in Section 2.3.

2.1.3 Masking

Masking refers to a process where one sound becomes inaudible because of the presence of

another sound. Masking threshold is used in the design of conventional audio coders. In

this work we have used a transformation from power spectrum to excitation domain instead

of using masking thresholds.

Simultaneous masking occurs when two or more stimuli enter the auditory system at

the same time. The relative spectral magnitude of the masker and the maskee determines

the effect of one spectral energy in masking another one. As examples of simultaneous

masking we can mention: Noise-Masking-tone (NMT), tone-masking-noise (TMN) and

noise-masking-noise (NMN). For a more thorough explanation the interested reader is

referred to [19].
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Non-simultaneous masking occurs whenever the masking in time extends beyond the

window of simultaneous stimulus presentation. For a finite duration masker the masking

effect occurs both before masker onset and after.

2.2 Time-Frequency Analysis Filter Banks

Audio codecs need some type of time-frequency analysis. In order to employ the character-

istics needed in perceptual audio coding it is needed to extract a frequency representation

of the input signal. The most widely used means to obtain this goal is the notion of filter

bank, which is a parallel bank of bandpass filters. A filter bank, divides the signal spectrum

in to frequency subbands and a time series in each band which demonstrates the frequency

localized signal power within each band. If M filters are used each will be characterized by

a time domain impulse response hk(n) as well as a frequency response Hk(ω). Filter banks

can be described using analysis synthesis frame work (Fig. 2.2). The input signal s(n)
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Fig. 2.2 Uniform M - band maximally decimated analysis-synthesis filter
bank [2]

.

is processed by a band of (L − 1) th order finite impulse response (FIR) bandpass filters

Hk(z). The bandpass outputs are

vk(n) = hk(n) ∗ s(n) =
L−1∑
m=0

s(n−m)hk(m), k = 0, 1, . . . , M − 1 (2.4)

Decimation is done after this stage which gives yk(n) = vk(Mn). It is impossible to

implement ideal band pass filters. Therefore, aliasing is unavoidable. Quantization is done
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on the subband sequences yk(n). The quantized version of the signal ŷk(n) is up sampled by

M . Finally, a bank of synthesis filters Gk(z) is used in parallel and the overall output ŝn is

formed [2]. Perfect reconstruction occurs when ŝ(n) = s(n). It is shown in [20] that having

the analysis window wa(n) and the synthesis window ws(n) and assuming no quantization

noise the condition of perfect reconstruction is

∞∑

k=−∞
wa(n− kL)ws(n− kL) = 1. (2.5)

The quantity L is the transform block advance of the windows. Defining the new window

w(n) = wa(n)ws(n), we can express the above expression in the frequency domain as

W (
2πl

L
) =

{
1, l = pL

0, otherwise

Since, usually quantization noise is introduced and yk(n) 6= ŷk(n) perfect reconstruc-

tion can not be obtained. MDCT and DFT are two specific filterbanks which have been

considered. The details of design consideration and MDCT characteristics follow.

2.2.1 Design Considerations

In order to have an efficient coding performance we need our filter bank to be matched

to signal properties. One of the difficulties encountered, is the trade off between time and

frequency resolutions. Most audio source signals are stationary for a long period (a few

frames) and then they will have an abrupt change [21]. Therefore, the optimal decision

concerning the time frequency decomposition should be made adaptively. Some of the

desired characteristics for filter banks are

• perfect reconstruction: A perfect reconstruction filter bank decomposes a signal by

filtering and subsampling. It reconstructs it by inserting zeroes, filtering and sum-

mation.

• signal adaptive time-frequency tiling: Since speech is a non stationary signal, the fre-

quency characteristics change over time. Therefore, a time-frequency representation

of this signal is desired.

• good channel separation.
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• strong stop band attenuation.

• critical sampling: Critical sampling means that the amount of data (samples per

second) remains the same in the transformed domain.

In the next section MDCT, a Perfect Reconstruction cosine-modulated filter bank is dis-

cussed more.

2.2.2 Cosine Modulated PR Filter Banks and MDCT

Perfect reconstruction in filter banks has been popular. Works done by Malvar [22], Ram-

stad [23] and Koilpillai have proved that implementation of generalized PR cosine filter

banks is possible. This section is more concentrated on a specific type of PR filter banks.

Here the order “L” of each impulse response is twice the number of filter banks “M”. This

filter bank was formulated as a lapped orthogonal block transformation by Malvar. How-

ever, recently in the world of audio coding it has been known as modified discrete cosine

transform or “MDCT”. The MDCT analysis filter impulse responses are given by

hk(n) = w(n)

√
2

M
cos

[(2n + M + 1)(2k + 1)π

4M

]
. (2.6)

The synthesis filters are obtained by a time reversal,

gk(n) = hk(2M − 1− n). (2.7)

In practice filter banks are realized as a block transform. Below, we have explained the

process to obtain the MDCT coefficients from the input signal as well as the inverse trans-

formation, this process has been depicted in Fig. 2.3 as well.

• MDCT Realization: The analysis filter bank is realized using a block transform of

length 2M with an overlap of 50% between the blocks. Despite this overlap MDCT

is critically sampled. Given the input block x(n) the coefficients of MDCT transform

X(k), for 0 ≤ k ≤ M − 1 are

X(k) =
2M−1∑
n=0

x(n)hk(n). (2.8)



2 Perceptual Audio Coding 17

Frame k

M                       M                       M

Frame k+1 Frame k+2

2M

2M

2M MDCT

MDCT

MDCT M

M

M

(a)

2M

IMDCT

M

M

M

IMDCT

IMDCT 2M

2M

+

+

MM

Frame k Frame k+1

(b)

Fig. 2.3 2M samples mapped to M coefficients a) Forward MDCT trans-
form analysis with 50% overlap. b)The inverse transform [2]

This sum has the same form as the DFT of the signal x(n), but the basis functions are

changed and the summation expands over 2M coefficients. The inverse MDCT ob-

tains the reconstruction by computing a sum of the basis vectors which are weighted

by the transform coefficients of two blocks. The first M samples of hk(n) are mul-

tiplied by X(k) (coefficients of the current block). However, the second M samples

are weighted by XP (k) (the coefficients of the previous block). Therefore, the inverse

transform which gives x(n) for 0 ≤ n ≤ M − 1, is defined as

x(n) =
M−1∑

k=0

[X(k)hk(n) + XP (k)hk(n + M)] (2.9)

The next step is the design of proper window w(n). As shown in [24] the linear phase

and Nyquist conditions can be reduced to,

w(2M − 1− n) = w(n) (2.10)
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and

w2(n) + w2(n + M) = 1 (2.11)

• Popular Windows : MDCT is realized using a “sine” window. Malvar developed mod-

ulated lapped transform (MLT) and formulated the filterbank as a lapped orthogonal

transform [25]. The window is defined as 1

w(n) = sin
[
(n +

1

2
)

π

2M

]
(2.12)

for 0 ≤ n ≤ M−1. This type of window has several unique properties. The dc energy

is concentrated in just one coefficient. The filter bank channels have 24 dB sidelobe

attenuation (The amplitude of the first sidelobe is 24 dB less than the main lobe).

The MLT has been used in MPEG-1, Layer 3 hybrid filter bank MP3 and MPEG-2

filter bank [2].

2.3 Perceptual Domain Transforms

The auditory filters are representations of the frequency selectivity of the hearing system

at a particular frequency. The excitation pattern refers to the distribution of the excitation

evoked by that sound as a function of some internal variable related to place or frequency

[17]. In terms of filter banks, these patterns can be seen as the outputs of each filter as a

function of filter center frequency. In this thesis, the excitation patterns have been used

as the elements to be quantized after some perceptual transformations. In this section we

will discuss these transformations more and the quantization scheme will be explained in

Chapter 4.

In most models for computation of the excitation patterns, power spectral components

are divided to non-overlapping critical bands and then some form of spreading is applied

to critical band intensities. The dividing step accounts for intra-band masking and the

spreading accounts for masking effects between bands. The models used for the computa-

tion of excitation patterns is Patterson and Moore’s. It is assumed here that the excitation

patterns are derived using a continuous integral of power spectrum weighted by a spreading

1We can also use the prototype window introduced in [26]. This is a prototype window for MDCT
which considers the frequency response of ear.



2 Perceptual Audio Coding 19

function as

E(fc) =

∫ ∞

0

P (f)W (f, fc)df, (2.13)

The variables fc and f are both frequency in Hertz, fc is the frequency center of each

smearing function and f is the range of frequency over which we take the integral. P (f)

is the input signal power spectrum and W (f, fc) is the frequency response of the smearing

function centered at fc. These functions have an exponential decaying shape which is mul-

tiplied by a linear term in f . The computation to find the inverse transform is intractable.

However, simplifying the above equation to a form of discrete matrix operation, we will

wind up to a transformation which can be inverted. The distortion measures used in the

quantizers working in the power spectral domain is in the Lp norm. Mean square norm is

a specific case which is defined as D(X, X̂) = ||X − X̂|| where X and X̂ are the original

and the quantized version of the power spectrum. Transforming the spectrum to excitation

patterns using a transformation matrix T , the distortion measure is no longer defined in

metric space. Besides that, we no longer have independent components of distortion in

different dimensions. The latter, gives us an easy way of bit allocation in each dimension.

The new distortion measure in the perceptual excitation domain is defined as [27]

D(X, X̂) = ||T (X)− T (X̂)||. (2.14)

Using this transformation we can define metric spaces on T (X) instead of X. This fact,

accounts for the implementation of the quantization in the excitation domain so that:

• The distortion is defined as the norm of the difference between the quantized exci-

tation vectors and the original excitation vectors. Therefore, we again have a metric

space.

• After decorrelation we can use incremental bit allocation, since the effects of the

quantization are local. In other words, we are quantizing in a new domain and we

are able to implement the quantization schemes used in power spectrum domain.

2.3.1 Excitation to Power Spectrum Mapping

As mentioned in the previous section the excitation pattern can be extracted by integratiNG

the power spectrum weighted by a spreading function. A common spreading function,
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usually used is in the form of roex [17] parameterization of the auditory filter which is

stated as

W (f, fc) =
(
1 + p

|fc − f |
z

)
e−p

|fc−f|
z (2.15)

the parameter p depends on the center frequency fc and input power P (f). This fact makes

Eq. (2.13), an integral nonlinear equation. To simplify the computation the assumption

of level independence has been made. Therefore, p is only a function of frequency. The

value of p used for simulations is a good approximation for medium levels around 50 dB

SPL. Patterson has showed that p can be approximated as
4fc

ERB(fc)
, where ERB(fc) =

24.7(
4.37

1000
fc + 1). We can, therefore, express the spreading function as

W (f, fc) =
(
1 +

4

ERB(fc)
|fc − f |)e−

4

ERB(fc)
|fc−f |

(2.16)

While implementing, we only have power spectrum at discrete points. Therefore, we need

an approximation to the integral defined in Eq.( 2.13).

The frequency axis for one period of the Fourier transform spans over the interval

[0, Fs/2]. Assuming that we have frequency domain representation vectors of dimension

N the frequency difference between two adjacent components will be
Fs

2N
. This replaces

the df element in the integral. The frequency samples over which the summation is done

can be represented as fk = kFs

2N
and finally we will wind up with the following discrete

representation for excitation components

E(fci
) =

Fs

2N

N−1∑

k=0

P (
kFs

2N
)W (

kFs

2N
, fci

), for 1 ≤ i ≤ N (2.17)

where ci is the ith center frequency and fci
= iFs

2N
. In order to simplify the implementation

the above equation has been rewritten to matrix representation. We define the N × 1

power spectrum vector pk = P (fk), the N×1 excitation vector eci
= E(fci

) and the N×N

auditory filter matrix Wk,i = W (fk, fci
), the matrix representation will be in the following

form

e =
Fs

2N
Wp. (2.18)

Since, the transformation matrix is invertible we can define the inverse transform from the



2 Perceptual Audio Coding 21

excitation domain to power spectrum as

p =
2N

Fs

W−1e. (2.19)

This equation has been used to calculate the excitation patterns of an ideal sinusoid with

frequency 1000 Hz. The sampling frequency is 8000 Hz and the dimension of the vector

representing the spectrum is N = 120. The power spectrum which is represented using

DFT has one non zero element. Figure 2.4 depicts the excitation patterns for an interval

of 20 to 90 dB SPL of levels.

500 1000 1500 2000 2500 3000 3500 4000
−100

−50

0

50

100

Frequency(Hz)

S
P

L(
dB

)

Fig. 2.4 Predicted Excitation Patterns for a 1 kHz tone with levels changing
in the interval 20 dB–90 dB SPL

2.3.2 Inverse Transformation

In order to use the transformation from power spectrum to the excitation domain we have to

make sure that the inverse transform exists. This assures the possibility of switching back to

the power spectrum domain. As mentioned previously the matrix W is invertible. However,

another concern here is to check whether the transformation matrix is ill conditioned or

not. Using the following transformation

e = W−1We (2.20)
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where e is the power spectrum representation of an ideal sinusoid we expect to have an

ideal sinusoid at the output for the ideal case. For an input of 30 dB SPL and the frequency

1 kHz the reconstructed power spectrum is depicted in Figure 2.5. The resultant spectrum

has its peak at the sinusoid frequency. It can be seen that there is a suppression of at least

150 dB. The simulations have been done using Matlab and double precision with 64 bits

has been used. This suppression is enough for our purpose in audio coding.
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Fig. 2.5 Power spectrum for 30 dB SPL ideal sinusoid after direct and inverse
transformations

2.3.3 Outer/Middle Ear Transformation

Another factor considered in the transformation to excitation domain is the outer/middle

ear transformation. The ear can be modelled as a weighting filter. Its frequency response

as stated in ITU-R B.S. 1387-1 [28] is,

AdB(fkHz) = −2.184(f/1000)−0.8 + 6.5e−0.6(f/1000−3.3) − 0.001(f/1000)3.6. (2.21)

We need to take this transformation into account in order to consider human perception

fully in the construction of a perceptual based quantizer. Therefore, the inner outer ear

model can be seen as a diagonal matrix D which consists of the values given by Eq. (2.21)

as the diagonal elements.



2 Perceptual Audio Coding 23

2.3.4 Ear Internal Noise

While modelling the ear, we also have to consider an additive element εTH called the ear

internal noise which is added to the excitation components. The noise excitation which is

considered as an offset is expressed in terms of frequency in a closed form. The Kapust’s

[29] noise threshold s is related to frequency as,

s(f)dB = (−2− 2.05× tan−1(f/4000)− 0.75× tan−1(
1

2.56
× (f/1000)2)).

s = 10sdB/10
(2.22)

The ear internal noise is given by Moore’s model [30] as,

I(f) = 10
(1.466×(f/1000)−0.8)

10

Eth(f) =
I

s
.

(2.23)

The following graph depicts the relation between the internal noise and frequency.
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Fig. 2.6 Internal Noise Excitation Pattern given as a function of frequency.
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Chapter 3

Gaussian Mixture Models and their

use in Vector Quantization

In order to design quantizers it is needed to choose a set of training vectors which properly

represents the vectors to be coded in the VQ. Therefore, the training data is chosen such

that it has all the underlying data statistics. There are a lot of factors that need to be

addressed in VQ design [4] such as: Computational Complexity, Rate Dependence, Bit-

Rate Scalability, Variable Rate Coding and Learning. In [31], performance bounds for

vector quantization (VQ) of speech spectrum source are obtained by combining concepts

from high rate quantization and GM modelling and also GM model capabilities in VQ is

demonstrated. The concept of GMM has been used in VQ design in [4] and [32]. Use of

GMM in VQ design can help us obtain a lot of factors which are mentioned above. Below

we describe the concept of Gaussian Mixture Models and mention some examples of its use

in signal processing. Also, the design of a VQ based on GMM will be discussed further.

3.1 Density Estimation Using Mixtures

Density estimation for random sources has been done using two different approaches [4]:

One is the maximum likelihood parameter estimation. This approach is called parametric

data estimation. The pdf of the source f(x) is assumed to belong to a family of parametric

densities f(x|θ). The goal here is to find the parameter θ such that it best explains the

source. This approach is computationally efficient, since the parameter can be estimated

from a fairly small number of observations which linearly grows with the number of pa-
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rameters [33]. However, the drawback of this method is the enforcement of an a priori

structure on the observed data which may cause poor estimation of parameters.

Nonparametric density estimation on the other hand does not make any prior assump-

tion about the unknown pdf. Therefore, the estimation is consistent which roughly means

that if the number of samples is large enough, each estimated value is very close to true

value irrespective of the unknown pdf. However, non parametric techniques need large

number of observations. They also do not allow easy bit scalability and learning.

In order to solve this problem density estimation using mixture models [34], which lie

in the class of quasi parametric estimator has been introduced. This method benefits from

the advantages of both previously mentioned methods. The unknown pdf is modelled as a

mixture of parametric pdf ’s,

f(x|θ) =
M∑
i=1

αifi(x|θi) (3.1)

where

Θ = [M, α1, ..., αM , θ1, ..., θM ]. (3.2)

The parameter αi are the weight constants which have to sum up to one. Parameterized

by θi, fi(x|θi) is an individual parametric density. Each of the parametric pdf ’s fi(x|θi)

can also be called a cluster. Here M is the number of clusters is a design parameter. For a

dimension d, the number of parameters will be in the order of O(d2). Equation (3.1) can be

seen as a functional decomposition of the unknown pdf in terms of parametric pdf s which

make the basis functions of this decomposition [35].

3.1.1 Missing Data Problem

Mixture models could be interpreted as missing data problems. The probability that an

observation x belongs to cluster i is the mixture weight αi. The missing data here is

the information about to which cluster the observation belongs. Using the two steps of

the Expectation Maximization algorithm (which will be discussed in the next section) we

recursively substitute for the data using the expected value and the current estimate of

the mixture parameters in the Expectation phase. We then update the parameters using

the conditional mean in the maximization step. Due to the smooth nature of multivariate

Gaussians, they serve well as good radial-basis functions (their characteristic feature is that

their response decreases monotonically with distance from a central point). This means,
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having an unknown function we can consider each of the Gaussians as basis function in

space and they will model unknown functions properly. The problem of over–fitting can be

solved using multivariate Gaussians. This problem occurs when the model is derived using

a training data set and the model is over–fitted or to that training corpus, in other words

it just represents a small set of training vectors and will not show the general statistics of

source for a random test vector. Therefore, the quantizer may perform poorly for a test

corpus. The smooth nature of Gaussians will help on modelling the form of the unknown

statistics instead of the undesired details.

3.2 The EM algorithm

The expectation-maximization (EM) algorithm is a procedure for maximum-likelihood

(ML) estimation in the cases where a closed form expression for the optimal parameters is

hard to obtain. This iterative algorithm guarantees the monotonic increase in the likelihood

L when the algorithm is run on the same training corpus. This approach for computing

the ML estimate of pdf was first proposed by Dempester et al in [36]. We first look at

the problem of the EM algorithm in general case and then the special case of Gaussian

Mixtures will be considered.

3.2.1 Maximum Likelihood Parameter Estimation

Given a set of observation data in a matrix X and a set of observation parameters θ the

ML parameter estimation aims at maximizing the likelihood L(θ) or log likelihood of the

observation data X = {x1, ...,xn}

θ̂ = arg max
θ

L(θ). (3.3)

Assuming that we have independent, identically distributed data we can write the above

equations as

L(θ) = p(X|θ) = p(x1, ...,xn|θ) =
n∏

i=1

p(xi|θ). (3.4)
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To find the maximum for this function, assuming an analytical function, we can take the

derivative and set it equal to zero
∂

∂θ
L(θ) = 0. (3.5)

3.2.2 General Case

Before, further proceeding to the explanation of how this algorithm works we will give a

few definitions.

• Incomplete data The observation sequence in the cases where it is not sufficient to

describe the underlying model is called incomplete data.

• Hidden Data The data that can not be observed directly and gives information

about the state of the underlying model.

• Complete Data Combination of hidden and observed data.

The two steps of the algorithms will run as followed

• Obtaining model parameters by maximizing the Log Likelihood of the incomplete

data.

• Maximizing the expected log likelihood from the complete data.

The goal here is determining the optimum model parameters θ̂ for our estimate. Assuming

that the observed data is given in the matrix X we need to maximize the probability

p(X|θ̂). Y is the hidden data. In the EM algorithm it is primarily assumed that we have

an estimate θ and want to estimate the probability that each y occurs.

In order to maximize the following log-likelihood function a function based on the

expected value of the complete data is built

p(X|θ̂) ≥ p(X|θ) or log
p(X|θ̂)

p(X|θ)
≥ 0. (3.6)

Maximizing the the following auxiliary function will lead to find the maximum likelihood

answer,

Q(θ, θ̂) =
∑
Y

p(X,Y|θ) log p(X,Y|θ̂) = Eθ{log p(X,Y|θ̂)}. (3.7)

The four steps of the EM algorithm can be summarized as followed:
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1. Initialization: Choosing and initial value for the model parameters θ

2. Expectation step: Computing the function Q based on θ

3. Maximization step: Computing θ̂ = arg max
ˆθ

Q(θ, θ̂) to maximize the function Q.

4. Iteration: Set θ = θ̂ and repeating the steps 2 and 3 till the convergence of the

algorithm.

This algorithm can be applied to many problems. Hidden Markov Models (HMMs) and

GMMs are two specific cases. The explanation in the case of GMMs follows. The pdf of

each observation vector at a specific time t and the parameter θ are expressed as

Pθ(xt) =
M∑

m=1

pmbm(xt) (3.8)

θ = {pm, µm,Cm},m = 1, ..., M. (3.9)

The parameter pm is the mth mixture weight, µm is the mth mixture mean and Cm is

the mth mixture covariance. The observation matrix can be expressed in time as X =

{x1, ...,xT} and the component class indices , I = {i1, ..., it} where it ∈ [1,M ].

The likelihood of X can be written as

p(X|θ) =
∑

I

p(X, I|θ) (3.10)

where

p(X, I|θ) =
T∏

t=1

pitbit(xt). (3.11)

Regrouping the terms we can finally write the function Q in the following closed form

Q(θ, θ̂) =
T∑

t=1

M∑
i=1

log[p̂it b̂it(xt)]γt(i) (3.12)
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where

γt(i) = p(X|θ)p(it = i|xt, θ) and p(it = i|xt,θ) =
pibi(xt)∑M

k=1 pkbk(xt)
. (3.13)

Therefore the new model parameters θ̂ = {p̂m, µ̂m, Ĉm} can be found by solving the fol-

lowing expression
∂Q(θ, θ̂)

∂θ̂
= 0. (3.14)

3.2.3 Special Case: Gaussian Mixtures

In order to find the cluster weights, mean and covariance matrices we need to solve the

above equation for this specific case. We will not explain the details here and just state

the final results for the EM algorithms. The interested reader is referred to [37] for the

detailed proof.

1. Initialization: In this step an initial estimate of the parameters is obtained. For

all values of m the weight coefficients are initialized to 1/M the mean vectors are

initialized either to a random vector or a vector randomly chosen from the training

data base X and the covariance matrices C
(1)
i are initialized to a matrix with all of

the elements equal to one.

2. Likelihood Computation: In each iteration k compute the posterior probabilities

P (ωm|xt,θ) using

P (k)(ωm|xt,θ) =
p

(k)
i f

X|µ(k)
i ,C

(k)
i

(xt|µ(k)
i ,C

(k)
i )

M∑
j=1

p
(k)
j f

X|µ(k)
j ,C

(k)
j

(xt|µ(k)
j ,C

(k)
j )

(3.15)

where P (ωm|xt, θ) shows the posterior probability that given the observation vector

xt and the parameter θ the data is generated by the mth cluster.

3. Parameter Update: Having the posterior probabilities compute the weights, mix-
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ture means and covariances by

p
(k+1)
i =

1

M

T∑
t=1

P (k)(ωm|xt,θ) (3.16)

µ
(k+1)
i =

T∑
t=1

P (k)(ωm|xt,θ)xn

T∑
t=1

P (k)(ωm|xt,θ)

(3.17)

C
(k+1)
i =

T∑
t=1

P (k)(ωm|xt, θ)(xn − µ
(k+1)
i )(xn − µ

(k+1)
i )T

T∑
t=1

P (k)(ωm|xt,θ)

. (3.18)

A problem that usually arises in applications of mixture modelling is the implementation

of the algorithm when the number of parameters in θ increases. If we use more parameters,

the obtained freedom may cause us the problem of over fitting, since the random properties

of the training data may have been reflected in the model. On the other hand, a large

number of parameters will cause undue complexity [31]. Therefore, there is need to find a

compromise. Below one popular method for this goal is explained.

Use of Diagonal Covariance Matrices in GMMs

The number of parameters could be decreased by a great amount if diagonal covariance

matrices are used instead,i.e. Ci = diag{λi,1, · · · , λi,d} where d is the dimension of the

input vector. It has been shown in [3] that in order to have the same precision in modelling

the underlying pdf of xt the use of diagonal covariance matrices will result in bigger number

of Gaussians comparing to the original case. The update equation for the elements λ
(k+1)
i,j
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then changes from Eq. (3.16) to

λ
(k+1)
i,j =

T∑
t=1

P (k)(ωm|xt,θ)(xt,j − µ
(k+1)
i,j )2

T∑
t=1

P (k)(ωm|xt,θ)

(3.19)

where xt,j and µ
(k+1)
i,j are the jth component of the observation vector at time t and the

mean vector at the (k + 1)th iteration.

The performance of the EM algorithm depends on its initialization. Although, the over-

all shape of the density only varies slightly with different initializations, but the individual

parameters may depend greatly on the initial value used for the algorithm, there have been

different initialization methods proposed in the literature [38].

3.3 The Curse of Dimensionality

The ”Curse of Dimensionality“ is a phrase first used in [39]. This refers to the problems

including high dimensional data. The problem is that in high number of dimensions the

data will be very sparse. As an example looking at 10 points in unit interval and in a unit

10-dimensional hypercube, we can see that the points are much closer on the unit interval.

Another related problem is the over parameterization of data processing algorithms. For

instance, in the problem of gaussian mixtures a mixture of M Gaussians has O(M×n2) [40]

where n is the input dimension. The problem that may arise here is that if the number of

parameters is too large compared to the number of data points, the model may over–fit to

the training data. In order to constrain the number of parameters regularization algorithms

are used [40]. One way of regularizing the covariance matrices is to assume they are all

diagonal or spherical.

A problem in GMMs is that when one of the covariance matrices is singular the likeli-

hood function has a maximum. In order to avoid these singularities we may impose artificial

lower bounds on the volume elements (determinants of the covariance matrices) for each

Gaussian. This is done by adding a small diagonal matric εIn×n to each covariance matrix

in each iteration of the EM algorithm [12]. In the work done by Ormoneit et al [12] they

note that ε introduces a bias in favor of large variances. The value of ε is changed over
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a range of values and the one which minimized the classification error in their problem is

chosen. This algorithm has been used in our implementation and is needed in the case of

full covariance matrices with high number of dimensions. The bias term is added to the

covariance matrix in each iteration of Maximization step and also is added to the posterior

probabilities. Finally, after changing the values of ε the one which causes the smallest error

in the model and still helps avoiding the problem of singularity is chosen.

3.4 Some of The Applications of Gaussian Mixture Models

Mixture models have been used for identification of outliers and tackling the problem of

missing data. They have also been used as clustering techniques, supervised learning in

the “mixture of experts” architecture [41], for classification using bayes classifiers and for

regression. Below some of the applications of Gaussian Mixtures, prior to their use in

speech quantization is discussed.

3.4.1 Classification

A classifier assigns vectors from an n dimensional feature space to one of K classes or

categories and partitions the feature space to K disjoint regions. In [40] a new classifier

called Gaussian Mixture Bayes classifier is introduced. This classifier also suffers from

the problem of curse of dimensionality, since for K classes and Q mixtures the order of

operations will be O(K×Q×n2). Kambhatla has explored ways of regularizing this GMB

in [40]

3.4.2 Regression

The goal in regression is the prediction of m response variables y, given observed values of

n predictor variables x. The joint density of the input and output can be modelled using

Q Gaussians. The regression function can be written as E[y|x] and the regression will be a

weighted sum of linear models where the weights are component probabilities in the GMM.

Thus a GM model for regression defines a soft local linear model for data [40]. In this work

regularized GM regression algorithms have been proposed.
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3.4.3 Gaussian Mixtures in Speech Recognition

Gaussian mixture models have been used in speech recognition in [3]. The goals in speech

recognition can be categorized into two groups: verification and identification. In veri-

fication the goal is to determine whether a claimed identity is true or not. In speaker

identification the goal is to find out which one of the voices in a given set, best matches the

input voice. Reynolds and Rose [3] have used GMMs for robust text independent speaker

identification. It has been shown that speech spectrum is effective for speaker identification

[42]. This is due to the fact that, the spectrum reflects the vocal tract’s structure. In [3]

cepstral coefficients which are derived from a mel frequency filter bank to represent short

time speech spectra (Fig. 3.1) have been used. In their model they have used mixtures of

Cosine

Transform
FFT

2| . |

Bark Scale Filter bankPre emphasis

[ ]
t
s n

1 t
x x

Fig. 3.1 Bark-Scale cepstral feature analysis [3]

Gaussians with M components. Each speaker is represented by a GMM and is referred to

by his/her own parameters θ where,

θ = {pi,µi,Ci} i = 1, . . . ,M (3.20)

There have been two main reasons for choosing GMMs as the representations of speaker

identity. First their ability to model different acoustic classes. The acoustic classes like

vowels nasals or fricatives reflect some general speaker dependent vocal tract identifications.

The spectral shape of each of the classes is represented by the corresponding cluster’s mean

and its average spectral shape is shown using the covariance matrix [3]. The second reason

is that GMMs are good basis functions, since each of the components has a smooth nature.

Therefore, they can model arbitrary shaped smooth densities very well. In this work, for

a set of S speakers S GMMs have been used. The approach to detect the identity of a

speaker is as followed. For the input vector set X the conditional probability p(X|θk) is

computed for k = {1, . . . , S}. The parameter set which maximizes this probability will be

chosen. The index of this parameter set determines which speaker has been chosen. In
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other words this can be written as

Ŝ = arg max
1≤k≤S

T∑
t=1

log p(xt|θk) (3.21)

xt are the feature vectors. This is a maximum likelihood approach for user identification.

3.5 GMM Based Vector Quantization

Gaussian mixture models have become more popular recently in the field of image and

source coding. Su and Mercereau have used GMMs and generalized gaussian mixtures

[43] in image coding. The case that they have considered, concerns the problem of DC

distribution. They have used block transform coding in which the image is divided to

N ×N blocks, and a transform of each block is performed. Prior to their work, DPCM has

been used to exploit the correlation between DC samples (here DC refers to zero-frequency

transform coefficients). However, the bit allocation for this scheme is complicated. They

have used Gaussian mixtures to model the DC data. In [32] the information theoretic

extremal property for source coding has been extended from Gaussians to mixtures of

Gaussians using high rate quantization theory. Gray has also extended a method originally

used for LPC speech VQ to provide a Lloyd clustering approach to the design of Gauss

mixture models. GMMs have been used by Hedelin and Skoglund [31] for parameterz

training in high rate VQ. They obtain expressions for high rate VQ in terms of lower and

upper bounds. These expressions accurately give numerical high rate predictions even for

small data sets. In practical usages the support of a GMM used for modelling the data

might be bounded. This is called the problem of bounded support. Therefore, the pdf is

defined only for a specific set of input values of the vector x to be quantized. Hedelin et

al [31] present a modified EM algorithm for densities with bounded support which models

the data with less number of parameters.

The recent work of Subramanian and Rao in GMM Based VQ, concentrates more on

building structures for efficient VQ in a practical way rather than the theoretical high rate

expressions derived by Hedelin et al [4].

The work in this thesis uses the same building blocks that have been used in [4].

Fig. (3.2) depicts the overall scheme. The scheme shown uses a set of training vectors

Xn to find the parameters of the GM Model. Then quantization is done in a closed form
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Fig. 3.2 Mel-Scale cepstral feature analysis [4]

formulation which will be discussed more thoroughly in the next chapter. The quantizer

design is independent of the data. Therefore, the statistics of the data will affect the den-

sity estimation part only. These parameters could be updated adaptively while the data is

changing. Therefore, the parametric density estimation given here followed by the closed

form quantizer design will give the advantages of bit rate scalability, variable rate coding,

interoperability (which means the ability of switching between memoryless quantizers and

quantizers with memory) and learning. If we can build models which properly show the

underlying statistics of the source, optimal finite rate quantizers can be built. In practice

this optimality means having quantizers which provide us good distortion performances at

low complexity. In the scheme proposed, the main idea is quantizing each of the clusters

in the GM Model independently. Therefore, bit allocation should be done first between the

clusters and then to each dimension in the cluster. The number of bits allocated to each

cluster will be affected by the following facts.

• whether the system is fixed or variable rate

• the weight or probability given to each cluster in GM model

• the covariance matrix of the cluster

Transform coding is done within the clusters to allocate bits to each of the d components of

cluster. Here we assume that the dimension of the input vector is d. The quantizer scheme

used in each dimension uses a companding scheme (a compressor followed by a uniform

scalar quantizer and then by an expander). After the quantization step, the quantized

version which minimizes the relevant distortion measure will be chosen as the output.

Although, this quantizer is not optimum for a given mixture model the gain made in search

and memory complexity justifies the loss of optimality [4].

In the next chapter the concepts from Chapter 2 and 3 will be used to build a “percep-

tual domain” quantizer. The detailed transformations, quantizer design aspects, the bit
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assignment scheme and results obtained will be discussed more thoroughly.
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Chapter 4

Design of a Perceptual GMM Based

VQ

As discussed in the previous chapters our design goal is building a quantizer which works in

the perceptual domain and its corresponding distortion measure is perceptually weighted.

The use of GM based VQ gives us the freedom of variable rate coding and bit rate scalability.

The input speech or audio file is divided to frames of length 60, 80 or 120. These input

vectors are then transformed to power spectral domain. This transformation is done using

both the DFT and MDCT and the results are compared. Here, we assume the perfect

reconstruction of the phase and the quantization is done on the magnitude.

4.1 The Overall Scheme of the Proposed Method

The overall proposed encoder scheme is depicted in Fig. 4.1. Frequency representation

vectors of length 60, 80 and 120 have been used here for the purpose of quantization. Since

we are using 50% overlap between successive input frames the corresponding frame lengths

will be 120, 160 and 240. The sampling frequency for audio and speech files used is 8 kHz.

Therefore the time spacing between two adjacent samples will be 0.125 msec. The reason

that we have chosen 50% overlap is to avoid discontinuities and blocking effects. Each

frame here has been windowed using the “sine” window discussed before in Chapter 2. The

graph of a sine window for windowing a vector of length 240 is depicted in Fig. 4.2
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Fig. 4.1 The proposed quantization scheme a) encoder part b) decoder part

4.1.1 The effect of windowing with overlap

For input blocks of length N after windowing each of the blocks, a pointer will be shifted

N/2 samples in our data file to specify the beginning of the next block. Assuming that

we have L samples, the number of frames in the case where we do not have overlap is [ L
N

],

while the number of frames of length N for the same number of samples, in the case of

50% overlap is equal to [ L
2N

] (after the overlap and add operation each block of length N

is called a frame). This can be interpreted as having frames with twice the time duration

of the previous case.

We can benefit from the conjugate symmetric property, which exists for both MDCT

and DFT, in our power spectrum computations [44] for real signals. This can be expressed

as

X(k) = X∗(N −K), 1 ≤ k ≤ N − 1 (4.1)

where X(k) represents each DFT or MDCT coefficient. The DC component of speech/audio

is not perceived by the human ear. Therefore, for a vector of length 240, removing the DC

element and using the symmetry property, we only need to send 120 DFT/MDCT elements.
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4.1.2 Use of MDCT/DFT

We have used DFT and MDCT separately, as two frequency representations for our exper-

imental results. As shown in Eq. (2.6) MDCT is a sequence of real numbers. Therefore,

we need to quantize the amplitude and the sign. In our implementations we have assumed

perfect reconstruction of the sign and only magnitude has been quantized. On the other

hand, a DFT transform is represented by a magnitude and a phase. We still assume phase

to be reconstructed and only quantize the amplitude.

Generally building a quantizer for sign of a real number can be considered as a com-

parator with threshold equal to zero. We need 1 bit/coefficient to build this quantizer.

This will add up to the magnitude bit rate in a real implementation. In [11] an MDCT

based coding of speech is introduced and sign quantization has been considered in more

detail. They assume the phase to be a sequence of signs with equal symbol probability.

to reduce the coding rate the psychoacoustics and statistics of this sequence are exploited.

The sequence is divided to a masked and an unmasked set according to masking thresholds.

The components that are considered masked which are known to the decoder are not coded

explicitly. Using this scheme, on average 70% of the components belong to unmasked set

and sign is coded with and average around 0.5 bits/dim. The coding scheme used is a

Huffman code. However, DFT phase can be a continuous number in the interval [0, π].

Therefore, in general building a phase quantizer is more computationally complex and the

number of bits needed is more than 1 bit/coefficient.

Finally the results for quantized files using both transformations are given separately
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in the experimental section.

4.1.3 Middle/Outer Ear Transformation

The spectrum of each frame will be transformed to a frame of the same length using the

transformations discussed in Chapter 2. Equation (2.21) is used here to implement the

middle/outer ear transformation. In our implementations we have assumed f0 to be in

Hertz frequency instead of Bark frequency. For a real implementation we have used the

matrix approximation to Eq. (2.13) as we described previously in Section 2.3. For an input

vector of length N (by input vector we mean the vector in the frequency domain) f0 is a

vector of length N , which is uniformly sampled in the frequency interval [0, 4000Hz] and

each element of this vector represents the frequency center for one of the smearing functions.

The input vector is multiplied by the outer to middle ear transform D which is a diagonal

matrix obtained from the samples of the continuous Eq. (2.21).

4.1.4 Moore’s Excitation to Power Spectrum Transform

The Excitation domain transform has been implemented using the matrix given in Eq. (2.16).

The vector z0 has been assumed to be in the Hertz frequency domain like the previous sec-

tion. We have implemented the transformations in the Bark frequency domain as well. The

details and the logic behind this choice are discussed below.

Equation (2.13) is a representation in Hertz frequency. If, instead, we prefer to have

the transformation to Bark frequency we have to replace the smearing function W (f, f0)

by W
′
(f, z0), where z0 is the corresponding frequency element in Bark domain. The power

spectrum is given by DFT vectors, uniformly distributed in Hertz domain. Therefore, to

avoid the problem of finding the DFT coefficients at the Bark frequencies, it is convenient

not to change the variable of integration in Eq. (2.13) from Hertz to Bark. Finally the

transformation in Bark domain in the can be expressed as

E(zk) =

∫ ∞

0

P (f)W (f, g−1(zk))df (4.2)

which can be approximated by the following matrix representation

e =
Fs

2N
Wp (4.3)
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where W(i,k) = W ( iFs

2N
, g−1(zk)). The transformation used here to switch from frequency to

Bark is, z = g(f) = 7 sinh−1(f/650). We transformed the Hertz frequency range [0, Fs/2]

to the Bark frequency range [0, 7 sinh−1( Fs

2×650
)]. The Bark frequency interval has been

uniformly sampled, with N samples. Uniformly spaced bark frequency elements can be

represented as

zk =
k

N
g(

Fs

2
) =

k

N
7 sinh−1(

Fs

2× 650
) k = 1, . . . , N (4.4)

where we have replaced the frequency f by an index k. After the transformation back

to frequency domain using fk = g−1(zk), we have nonuniform samples in Hertz frequency

domain, which are used to find the elements of the matrix W.

The implementation shows that for a 120× 120 matrix, for this case where we assume

uniform sampling in Bark domain using Eq. (4.4) the transformation matrix W is ill con-

ditioned and the condition number is in the order of 1019. Comparing to the condition

number 105 in the case where we sampled the frequency interval [0, 4000Hz uniformly, this

justifies our rationale for using the Hertz frequency. Using the former transformation, will

cause instabilities in the results of implementations.

A graph is included to show the difference between the excitation patterns between

the Hertz and Bark frequency representations (Fig. 4.3). A sinusoid of frequency 2000 Hz

with DFT amplitude of 40 has been chosen. This vector has been transformed using the

matrix W which is implemented once in Hertz frequency and once in Bark frequency. The

frequency vector here spans the interval [0, 4000Hz], therefore since we are using 120 vectors

the frequency separation is 33.3 Hz. In the case of the Hertz frequency the maximum has

occurred at index 60 which is equivalent to 2000 Hz. The frequency interval mentioned is

mapped to [0, . . . , 17.5] under the bark transformation. The maximum in the case of Bark

frequency occurs at the index 90, which is equivalent to 90× 17.5/120 = 13.12 Bark. This

in term, is equivalent to 2000 Hz.

4.1.5 Calibration of Loudness

Calibration from input levels to loudness can be done in order to assume the perceptual

properties of the transformed vectors. The full scale sine has been considered to have a

Sound Pressure Level of 92 dB (called Lp). Integration of power density over frequency

gives the signal energy, which is shown by Parseval’s relation as well. Finally, this energy

is divided by the full scale sound pressure level. Finally the scaling factor which depends
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on the vector length, sampling frequency and full scale SPL is obtained. As an example

input vectors of length 120 with a sampling frequency of 8000 Hz and Lp of 92 dB will

give a normalization factor of 5.6× 10−5. Assuming level independence for the perceptual

transform as we had in Section (2.3.1) we no longer need to consider this effect in for

normalization of the signal. This factor is also needed in the computations of threshold of

hearing.

4.2 Use of DCT for Decorrelating the Data

4.2.1 The Karhunen–Loeve Transformation versus DCT

The principal component analysis or Karhunen-Loeve transform is a mathematical way of

determining a linear transformation of a sample of points in N dimensional space which

exhibits the properties of the sample along the coordinate axes. Along the new axes the

sample variances are extremes (maxima and minima), maximally aligned and uncorrelated.

The name comes from the principal axes of an ellipsoid (e.g. the ellipsoid of inertia), which

are the coordinate axes in question. It is designed to capture the variance in a data set in

terms of principle components. In effect, one is trying to reduce the dimensionality of the

data to summarize the most important (i.e. defining) parts while simultaneously filtering

out noise. Below we review a mathematical representation of this transform.

This transform is an expansion of a random vector in the eigenvectors of the covariance

matrix [45]. PCA linearly transforms an N dimensional vector x to N
′
dimensional vector
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y using the orthonormal vector W,

y = Wtx W = [w1,w2, · · · ,wN′ ] WtW = I (4.5)

where wi represents each of the eigenvectors of the covariance matrix C and the transfor-

mation W corresponds to the N
′
eigenvectors of the covariance matrix C, corresponding

to the first N
′
largest eigenvalues where

Q = {e1, e2, · · · , eN ′} where C = QΛQ
′
. (4.6)

This transform is optimum in the sense that it minimizes the variance of the axes in

the orthonormal space, meaning that the quantity D =
∑N

i=N ′+1 λi is minimized. Here

{λ1, · · · , λN} are the eigenvalues of Λ . Also, the resulting components of each dimension

are uncorrelated.

In our coder design, we need to model the underlying statistics of the data. Therefore,

GMMs have been used to model the training data. However, using diagonal covariance ma-

trices will reduce the computation complexity. The problem here is that if we have big off

diagonal covariance components, diagonal covariance matrices will not be a good approx-

imation. Decorrelating the data vectors, we will have the to use the diagonal covariance

matrix model, which is simpler.

Another difficulty that arises here is the implementation of the Karhunen–Loeve trans-

form. Since, this is a data driven transform it has to be updated adaptively based on the

new data vectors. Huang and Zhao show that [46] for a frame of length N the cost of

computing the eigenvalues of the signal covariance matrix is O(N3), which is large. The

other trouble is the need to send side information to implement Karhunen–Loeve trans-

form. However, we have the choice of using the Discrete Cosine transform (DCT) which is

an approximation to KLT.

The discrete cosine transform (DCT) is used in image processing and helps separate

the image into parts (or spectral sub-bands) of differing importance (with respect to the

image’s visual quality). The DCT is similar to the discrete Fourier transform: it transforms

a signal or image from the spatial domain to the frequency domain. An AR(p) model has
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a rational system function with p poles and for an input w(n), the output x(n) is

x(n) = −
p∑

k=1

akx(n− k) + d0w(n). (4.7)

In [46], it is proved that for an AR(p) random process KLT can be approximated by

DCT. In this case the order of computations reduces to O(N2) (If FFT is used in the

implementations the computation order will decrease to N log2 N). We have used DCT in

our implementations for decorrelating the data vectors. The one dimensional transform for

a frame of length N is defined as

S(k) = c(k)
N−1∑
n=0

s(n) cos
π(2n + 1)k

2N

where c(0) =

√
1

N
, c(k) =

√
2

N
k = 1, . . . , N. (4.8)

The inverse DCT for the one dimensional case is defined as,

s(n) =
N−1∑

k=0

c(k)S(k) cos
π(2n + 1)k

2N
. (4.9)

4.2.2 Experimental Results Using DCT

In order to compare the statistics of the source vectors before and after the DCT transfor-

mation the normalized covariance coefficients are computed as followed:

ρij =
E[(xi − µi)(xj − µj)]√

E[(xi − µi)]2E[(xj − µj)]2
. (4.10)

In this case the vector xi represents the MDCT transformed speech and audio vectors,

either before or after the DCT transform. These values have been computed for both the

original excitation vectors and the DCT transformed version. The total of 200 000 vectors

have been used for simulations and averaging has been done as an approximation to the

expectation operation. As it can be seen in Fig. 4.4 the normalized covariance coefficients

decrease more rapidly in the case of the DCT version which shows a less correlation between

different vectors. In order to better visually understand the effect of DCT, we have plotted
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Fig. 4.4 Normalized Covariance Values for the a) 20th b) 40th c) 60th d)
80th frequency bin, before and after the DCT transform
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the 2D histogram of data before and after the DCT transform. These histograms, show

the two dimensional distribution of data for different frequency bins. As it is seen in

Fig. 4.5 after the transform the data points are more symmetrically distributed around the

origin. No mean removal has been done at this step. The colors in the histogram show

the magnitude. The values are in the order of increasing from white to black. The energy

compaction property of DFT can be clearly seen here. After the DCT transform the lower

frequency bins occupy a larger space, while the higher frequency bins occupy a smaller

space. In other words the energy has been more concentrated around the low frequency

elements.

4.3 The Nonnegative Least Squares Problem

An important issue in the implementation of the Excitation domain transform is the invert-

ibility of the transformation. This concept has been first introduced by Johnston in [13],

where he mentions the necessity of inverting the spread threshold back to Bark domain af-

ter convolution of power spectrum with spreading function. In this case, the deconvolution

is very unstable and may result in negative power spectrum. Therefore renormalization has

been used as a solution. We have used a different approach which is explained below.

The space of an N dimensional power spectrum vector spans R+N
, which is the N

dimensional vectors with all nonnegative elements. However, transforming these vectors

to the excitation domain using the transform matrix T which is equal to DW, the new

vectors no longer span R+N
. The matrix D is introduced in section (2.3.3). The new

space is a subset of the original space which is bounded by a polyhedron. The faces of this

polyhydroxy are spanned by each of N combinations of N − 1 columns of the transform

matrix.

A problem that may arise here is that, we have limited the acceptable points to a

subspace of R+N
named S. The points which are near the boundaries of S are most

likely to be quantized outside S. However, transforming the quantized excitation elements

back to the power spectrum domain, we may wind up in power spectrum with negative

entries. One way of avoiding this problem is finding the admissible excitation pattern e
′

which is closest to the quantized excitation pattern ê. The correction algorithm involves

successively projecting the quantized vector on the faces of the polyhedron and choosing

the vector which minimizes the error. This works when the quantized excitation vectors all
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Fig. 4.5 2D histogram of speech vectors before DCT transformation: a)
5th and 10th frequency bins, c) 10th and 20th frequency bins and e) 30th
and 40th frequency bins. Histogram after DCT transformation: b) 5th and
10th frequency bins, d) 10th and 20th frequency bins and f) 30th and 40th
frequency bins
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have positive elements. This way it is ensured that the projection involves positive linear

combination of basis vectors.

The general problem of least squares can be formulated as follows

min ||Tp− ê||, subject to Lp ≥ h (4.11)

where h is a desired vector and the comparison between the vectors is done element by

element. We are interested in the case where the resulting power spectrum is positive. In

other words L is the identity matrix and h = 0, T is the excitation domain transformation

and ê is the quantized excitation vector. If we do not use the least square algorithm to

convert back to the power spectrum domain and simply use the inverse transform of the

matrix T we may wind up in negative power spectral elements. This case has been studied

in literature [47]. Characterizing conditions of Eq. (4.11) are subject to the following

theorem [47].

Theorem 1 (Kuhn-Tucker conditions for LSI problem) An n dimensional vector p̂

is a solution for LSI problem if and only if there exists an m dimensional vector ŷ and a

partitioning of the integers 1 to m into subsets Ψ and Ω such that

LT ŷ = TT(Tp̂− ê) (4.12)

r̂i = 0 for i ∈ Ψ, r̂i > 0 for i ∈ Ω (4.13)

ŷi = 0 for i ∈ Ψ, ŷi > 0 for i ∈ Ω (4.14)

where

r̂ = Lp̂− h. (4.15)

This theorem can be interpreted as followed. Assuming that lTi denotes the ith row vector

of L, we define the space, {p : lTi p ≥ hi}. The vector li is normal to the bounding

hyperplane of this halfspace. Assume that the point p̂ is interior to the halfspace Ω and

on the boundary of the half space Ψ. Our goal is to show that p̂ minimizes the constraint

and it is the only unique answer to the problem.

The vector

â = TT(Tp̂− ê) (4.16)
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is the gradient of φ(p) = 1
2
||Tp− ê||2 at p = p̂. As stated previously, ŷi = 0 if i /∈ Ψ,

therefore Eq. (4.12) is simplified as followed

∑

i∈ψ

ŷi(−li) = −a. (4.17)

The negative gradient vector at p̂ is expressed as a linear combination of the normals −gi

to the constraint hyperplane on which p̂ lies.

We should also prove that the perturbed versions of the vector p̂ do not satisfy the

theorem’s constraint. A perturbation u of ê such that u + ê remains feasible must satisfy

uTli ≥ 0 for all i ∈ Ψ. Using the facts that yi ≥ 0 and multiplying both sides of Eq. (4.17)

by uT, it is apparent that uTa ≥ 0. Therefore, from the expression φ(x̂ + u) = φ(x̂) +

uTa + ||Eu||2/2, we see that there does not exist any perturbation vector u such that it

reduces the value of φ. Therefore, the obtained value is minimum and the answer is unique.

4.3.1 The Nonnegative Least Squares Algorithm

We have used the Matlab function lsqnonneg in our implementations of NNLS algorithm.

This function works based on the algorithm stated in [47]. Below, we explain the used

algorithm. The proof of convergence is included in [47], however we skip over it.

In the general case of NNLS algorithm we assume T to be a k × n dimensional matrix

and ê a k dimensional matrix. The n dimensional vectors w and z provide working space.

Two index sets are defined as P and Z are defined. On the termination of algorithm p is

the solution vector and w is its dual.

NNLS Algorithm [47]

1. Set P=NULL, Z = {1, 2, · · · , n} and p = 0.

2. Compute the n dimensional vector w = TT(ê−Tp).

3. If Z is empty or wj ≤ 0 for all j ∈ Z go to step 12.

4. Find the index t ∈ Z such that wt = max{wj : j ∈ Z}.

5. Move the index t from the set Z to P .
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6. Let TP denote the k × n matrix defined by

Column j of TP =

{
column j of T if j ∈ P
0 if j ∈ Z

The n dimensional vector z is computed as a solution of the least squares problem

TPz = ê. For the values of j where j ∈ Z, zj is assumed to be zero.

7. If zj > 0 for all j ∈ P , set p = z and go to step 2.

8. Find an index d ∈ P such that pd/(pd − zd) = min{pj/(pj − zj)|zj ≤ 0, j ∈ P}.

9. Set β = pd/(pd − zd).

10. Set p = p + β(z− p).

11. Move all the indices j ∈ P , for which pj = 0, from P to Z and go to step 6.

12. Termination.

Finally we have the following properties for the answer

pj > 0 j ∈ P
pj = 0 j ∈ Z.

(4.18)

The vector p is the solution to the least squares problem

TPz = ê. (4.19)

4.4 The Quantizer Design Details

As mentioned before in Chapter 3, our goal here is to have a quantizer which is matched

to the pdf of source. We first describe the bit allocation scheme used based on [4]. The

allocation algorithm has been changed slightly here to meet our specific conditions of high

dimensionality. We then explain the quantizer scheme and finally discuss our GMM training

with different number of clusters and in the cases of full and diagonal covariance matrices.

The experimental results and comparisons of speech and audio quality after the quantization

are presented in the next section.
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4.4.1 Bit Allocation Algorithm

Cluster bit allocation

It is assumed that we have the total of btot bits to allocate to our quantizer. These bits are

spread among the clusters and cluster i has bi bits, where 1 ≤ i ≤ M and M is the number

of Gaussians. Let Di(bi) represent the mean square distortion of the optimal transform

coder of cluster i. Using the high resolution expression for Di(bi) as shown in [48], the

Karhunen-Leove transform Q is the best transformation for minimizing the error. In [48]

it has been shown that the best transformation, to construct from the quantized values the

best estimate in a mean-square sense, is the inverse of the transformation matrix Q.

In [4] both fixed rate and variable rate quantizers have been discussed. For our imple-

mentations, we have used a fixed rate scheme.

1. Fixed rate: In this scheme the total number of codebooks points is fixed. It is as-

sumed that the total number of quantizer levels is the sum of the number of quantizer

levels in each cluster. In other words, 2btot =
∑M

i=1 2bi . Assuming that the clusters

are well separated we can use the following upper bound on the quantizer distortion

[4]

Dtot ≤
M∑
i=1

αiDi(bi). (4.20)

The aim in the design is to minimize the above expression and find the corresponding

bit allocation to each cluster. It is shown in [4] that

Theorem 2 (Optimized Fixed-Rate Cluster Bit Allocation) Subject to the bit

rate constraint 2btot =
∑M

i=1 2bi, in order to minimize the distortion measure the best

bit allocation is

2bi = 2btot
(αici)

N/N+2

∑M
j=1(αjcj)N/N+2

, 1 ≤ i ≤ M (4.21)

where,

Ci = QiΛiQ
T
i (4.22)

Λi = diag(λi,1, λi,2, · · · , λi,N) (4.23)

ci =
[ N∏

k=1

λi,k

] 1
N , 1 ≤ i ≤ M (4.24)
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and N is the vector dimension.

2. Variable rate: In this case the average rate of the quantizer is fixed. Assuming

that bc is the number of bits that specifies the chosen cluster, and assuming that

we use bi bits to quantize a particular cluster then the variable rate constraint is

bq = btot − bc =
∑M

i=1 αibi. The same expression for the total average distortion is

used in this case. It is proven in [4] that the number of bits given to each cluster can

be obtained by

bi = bq +
N

2

[
log2 ci −

M∑
j=1

αj log2 cj

]
. (4.25)

Bit allocation to each component in a cluster

The code book of each cluster is built using a transform coder [48],[49],[50]. The trans-

formation is done using a unitary matrix A on the input block p. In [49],[48] the case of

basis restricted transform coding where the transform coefficients yi, i = 1, 2, · · · , N are

quantized independently is considered. They have proven that Rj bits/sample needed for

the jth component yj with variance σ2
j and average mean square distortion of Dj does not

exceed

Rj = R̄ +
1

2
log2

σ2
j[∏N

k=1 σ2
k

]1/N
bits/sample (4.26)

where R̄ is the average bit rate. Using the results of [48] which give the optimum value of

the above formula and rephrasing the equation for our case the number of bits allocated

for quantizing the jth component of the ith cluster is given as

bi,j =
bi

N
+

1

2
log2

[λi,j

ci

]
. (4.27)

One improvement to this bit allocation is to add a constraint that the resolution of each

quantizer must be nonnegative. A problem that occurred in the implementations was that,

for the cases where λi,j is smaller than ci the log term is negative. Since we are using vectors

of high dimension the term bi

N
is small. Therefore, we wind up with negative number of

bits. In [10] it is shown that using Segall’s solution we can guarantee a nonnegative bit

allocation. In this approach it is assumed that the scalar components to be quantized

have identical normalized pdf. The mean squared error incurred in optimally quantizing
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each element is called w(b). Let the inverse of w(b) be J(w). The distortion function is

monotonically decreasing with increasing resolution b, therefore the inverse is well defined.

Segall’s solution gives the optimal bit allocation,

bi =

{
J
(

θ∗
σ2

i
w
′
(0)

)
, if 0 < θ∗ < σ2

i

0, if θ∗ ≥ σ2
i

(4.28)

where σ2
i is the variance of each component and θ∗ is the unique root of the equation

S(θ) =
∑

i:σ2
i≥θ∗

J
( θ

σ2
i

w
′
(0)

)
= btot. (4.29)

However, for our implementations, in order to simplify the computations of inverse function

needed above as well as finding the roots of Eq. (4.29) we simply changed the negative values

to zero. However, we have to check the bit rate constraint. In other words we need to make

sure that bi =
∑N

j=1 bi,j or the summation is slightly less than the total bits allocated to a

specific cluster. To reach this aim, we have changed the algorithm slightly. This procedure

is discussed as follows:

1. Assume that dimension k has −m bits.

2. Choose the jth dimension with the biggest value of variance λj. Then add m bits to

the number of bits allocated to this dimension using Eq. (4.27) and set the number

of bits in dimension k, equal to zero.

3. Discard both of the dimensions and repeat steps 1 and 2 until there is no more

negative number of bits allocated to any dimension.

4. Round the fractional bits allocated to the dimensions for practical implementation.

Although, the optimality is lost here to avoid the problem of negative bit allocation this

procedure is used. It is shown in experimental results section that the performance of the

quantized version of speech is still acceptable.

4.4.2 Quantizer Scheme

The following steps are done in the quantization
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• An input vector z is quantized using all the clusters.

• The quantization process in each cluster is shown in Fig. 4.6. In cluster i we subtract

the cluster mean µi from the input vector z. The next step is decorrelating the com-

ponents of each input vector. As discussed in the previous section the transformation

matrix A is a unitary matrix. It is known that [48], the best transform will be the

Karhunen-Leove transform, therefore the eigenvector matrix QT
i of the covariance

matrix Ci is used as the transformation (Section 4.2.1).

• At this step the quantization is simplified to scalar quantization which will be ex-

plained.

• The decorrelation process is done using the inverse of the transformation matrix QT
i .

The eigenvector matrices are unitary therefore this inverse matrix will be equal to

Qi.

• Having M quantized versions of the input vector, we chose the vector, which mini-

mizes the distortion measure. In [4] the Log spectral distortion has been chosen as

this measure. In our implementations Minimum Mean Square Error (MMSE) has

been used instead.

z

,1ib
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ii

    Compressor ExpanderQuantizer      Decorrelator Correlator

,i Nbz

+
-

1

N

Fig. 4.6 Cluster quantization [4]
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Scalar quantization scheme

1. Compressor and expander By taking the statistical properties of the signal in

to consideration the distortion can be minimized by proper level distribution in the

quantizer based on the pdf of the signal [51]. In practice this is done using a compres-

sor function followed by a uniform quantizer and an expander which is the inverse

of the compressor. The compressor function, has more number of levels around zero.

It is shown that using this method the distortion is largely independent of the signal

statistics.

Assuming the probability density of the individual scalar components to be f(y) we

have used Panter and Dite’s compressor function [51], which minimizes the mean

square error of the scalar companding. It has the following form,

C(x) =

∫ x

−∞
f(y)1/3dy

∫ ∞

−∞
f(y)1/3dy

. (4.30)

The compressor function is a monotonic nondecreasing function [52]. In order to

implement the compressor function we have simplified Eq. (4.30). The computations

are described below.

For the purpose of implementation, the scalar pdf s have been assumed to be Gaussians

with mean zero and variance 1. The expression for C(x) can be written as

C(x) =

∫ x

−∞

1√
2π

1/3

exp
−y2

2× 3
dy

∫ ∞

−∞

1√
2π

1/3

exp
−y2

2× 3
dy

. (4.31)

In order to implement this function we have used the Matlab erf function. erf

function is defined as erf(x) = 2√
π

∫ x

0
exp−u2du = 2Q(

√
2x) − 1 where Q(x) =∫ x

−∞
1√
2π

exp−x2/2dx. Changing the variable of integration in Eq. (4.31), from y
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to t = y/
√

3 we can rewrite the equation as

C(x) =

∫ x/
√

3

−∞

1√
2π

1/3

exp
−t2

2

√
3dt

∫ ∞

−∞

1√
2π

1/3

exp
−t2

2

√
3dt

=

∫ x/
√

3

−∞

1√
2π

exp
−t2

2
dt

∫ ∞

−∞

1√
2π

exp
−t2

2
dt

= 2Q(x/
√

3).

(4.32)

The problem here, is that there is no direct expression for the inverse of C(x). There-

fore, we have to use a table–look up implementation. The transformed scalar com-

ponents yj are assumed to be Normalized Gaussians. Therefore,

p(yj ∈ [−l, · · · , l]) =

∫ l

−l

f(yj)dy =
1√
2π

∫ l

−l

exp
−y2

2
dy. (4.33)

Let l be equal to 5. The value of the above probability will then be equal to 0.9996.

Therefore, it is highly probable that all the Gaussian components lie in this interval.

We have mapped the interval k = [−5, 5] with steps of δ = 0.0001, using the closed

loop expression kj,comp. = 2Q(kj/
√

3), where kj is each individual element in the

above interval and kj,comp. is the corresponding compressed element.

In order to expand each element, the expander compares the quantized version of each

component with all of the components in the interval kcomp.. It chooses the element

with the smallest distance in this interval, i.e km,comp.. The corresponding component

km in the interval k is considered as the result of the expansion operation. In order

to have higher precision we have to decrease the step size δ, therefore we have a trade

off between precision and computational complexity.

2. Uniform scalar quantization The uniform scalar quantizer has been implemented

in a closed form here. Assuming yj to be the jth component to be quantized using a

uniform scalar quantizer Si,j of cluster i with Lj = 2bi,j which is obtained using the

bit allocation algorithm discussed in Section (4.4.1) on page (52), the quantized value
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ŷj is given as

ŷj =
round(yjLj + 0.5)− 0.5

Lj

. (4.34)

4.4.3 Comparison of the performance of different GM models used in the

implementations

For the purpose of parameterizing our data we had different choices for the mixture model.

Although, using full covariance matrices, models the data in a more precise way, it is com-

putationally inefficient to use full covariance matrices for high data dimensions. For a vector

of dimension N the covariance matrix has N(N−1)
2

+ N = N(N+1)
2

elements. Therefore, each

mixture is determined using N(N+2)
2

parameters, since it has a mean vector with dimension

N and a weight number. This number will be equal to 7320 for vectors of dimension 120.

For the case of 60 dimensional vectors this number is equal to 1860. This means doubling

the number of dimensions will result in quadrupling the size of the training data, since the

number of parameters is quadrupled and size of training data is directly proportional to

the number of parameters in our model. It is shown in [35] that for vectors of dimension N

with m training samples where normally m ≥ N the overall complexity of calculating the

individual discriminant function, which is linearly proportional to the number of parame-

ters (order of N2), is dominated by O(N2m) (here by discriminant function we mean each

of the basis functions in the GMM).

We encountered the problem of over–fitting, while using vectors of dimension 120 for

training the full covariance matrices. Another burden is the problem of singularity. The

EM algorithm can result in singular covariance matrices and the algorithm terminates. To

combat this problem, a minimum threshold is set for the covariance matrix. If, in any

iteration, it goes below the threshold the covariance is set equal to the threshold. The

other consideration is adding small matrices to the covariance matrix in each iteration of

the maximization step of the EM algorithm in order to regularize them. This issue is more

thoroughly discussed in [40] for the case of GM regression algorithms. We added these

offset matrices in the form of ε× IN×N . There is no specific theoretical rule describing how

to find the value of ε. For 120 dimensional vectors the values of 10−12 and 10−14 seemed to

be reasonable for full and diagonal covariance matrices.

For the purpose of illustration, the 1 and 2 dimensional histograms are given for data

vectors of dimension 60 with 8 and 16 mixtures (Figs. 4.7, 4.8 and 4.9). The center of



4 Design of a Perceptual GMM Based VQ 58

each cluster in GM is determined by the cluster mean and the shape is determined by the

cluster covariance. Therefore, the center of each 2D histogram is on the corresponding

elements of the mixture mean vector. The mixture mean is defined as as the sum of the

means of each cluster multiplied by the cluster weight. The GM mean vectors have been

initialized to a random vector using the randn function in Matlab. The covariances have

been initialized to N ×N matrices with all elements equal to one. We have used 8 and 16

mixtures for the implementations. We have used both diagonal and full covariances for 8

mixture Gaussians. The GMM training is done using 400 000 vectors of dimension 60. The

vectors used in this case are transformed to frequency domain using MDCT and then the

training is done. Comparing the modelling power of full covariance matrices with diagonal

ones, we see that we do not have a big gain, using full covariance matrices. The reason is

the fact that we loose some degree of precision when we add the offsets to the covariances.

In Figs. 4.8, 4.9 it is seen that the full covariance matrices result in 2D histograms with

lighter colors around origin (in comparison with the original histogram). Darker colors show

denser areas. Our experiences showed that, in all cases of using full covariance matrices

the offset element causes this change of distribution near origin. The reason is the need of

adding bigger offset elements, to avoid singularity. The diagonal elements of the covariance

are greater than expected. This causes a bigger density concentration near the mean of the

specific frequency bin (the mean is approximately zero).

The resulting histograms for 120 dimensional vectors have been included in Fig. 4.10 as

well. The frequency transformation used in this case is DFT. The case of 8 and 16 diagonal

mixtures have been considered in the histograms. Comparing this figure with Figs. (4.8,

4.9), we can see the areas with lighter colors are bigger here, which shows that the offset

added to the covariance in EM iteration is larger than the offset for lower dimensional data.

We previously discussed the use of DCT to uncorrelate the data vectors. This in addition

to the facts mentioned above and the computational complexity of full covariance matrices

accounts for choosing diagonal covariances as the basis of our quantizer design. The results

are discussed in the next section.
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Fig. 4.7 1 dimensional histogram of the 50th freq bin for MDCT trans-
formed vectors of dimension 60. a) Original b) Regenerated using 8 diagonal
covariance matrix mixtures. c) 16 diagonal mixtures. d) 8 full mixtures.
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Fig. 4.8 2D Histogram of the 30th and 40th freq bins for MDCT trans-
formed vectors of dimension 60. a) Original b) Regenerated using 8 diagonal
covariance matrix mixtures. c) 16 diagonal mixtures. d) 8 full mixtures.
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Fig. 4.9 2D Histogram of the 30th and 60th freq bins for MDCT trans-
formed vectors of dimension 60. a) Original b) Regenerated using 8 diagonal
covariance matrix mixtures. c) 16 diagonal mixtures. d) 8 full mixtures.
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Fig. 4.10 2D Histogram of the 5th and 10th freq bins for DFT transformed
vectors of dimension 120. a) Original b) Regenerated using 16 diagonal co-
variance matrix mixtures. c) Regenerated using 32 diagonal mixtures.

4.5 Experimental results

One concern in the design of the quantizer is the choice of dimension. We obtained slightly

better performance for the 120 dimensional vectors. We evaluated the quality of the quan-

tized speech using PESQ standard [53]. “Perceptual Evaluation of Speech Quality” (PESQ)

is the recent winner of the ITU standard P.862 for measurement of speech quality. The

PESQ measures the listening quality in intrusive (test call) applications and is accurate

in predicting subjective quality (MOS) in a wide range of applications. This value is a

number between 1 and 5. The MOS values are given in Table (4.1).

Table 4.1 MOS score descriptions.

Rating Speech Quality Level of distortion

1 Unsatisfactory Very annoying
2 Poor Annoying but not objectionable
3 Fair Perceptible and slightly annoying
4 Good Just perceptible but not annoying
5 Excellent Imperceptible

We compared the original files with themselves and got 4.5 as the output. Therefore,
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this will be the highest possible score. The results of the implementations have been

considered for both DFT and MDCT transforms. The MOS values are higher for DFT. We

have assumed perfect phase reconstruction in our simulations. The MDCT transform of a

signal is always a real number. Therefore, the phase reduces to positive and negative signs

in this case. These signs carry much less amount of information comparing to the case of

DFT, where we have real numbers as the phase. Therefore, the reconstruction effect will

have different results in the two cases. Tables 4.2 and 4.3, give the MOS results from PESQ

software, for different bit rates of 4 kBits/sec, 8 kBits/sec and 16 kBits/sec, using DFT for

120 dimensional vectors.

Table 4.2 MOS for quantized speech and audio using 16 diagonal mixtures
(DFT transformed followed by the perceptual transformation and DCT)

Speech file Audio file

Bit Rate (kHz) MOS MOS

4 2.6 2.9
8 2.88 3.5
16 3 4.1

Table 4.3 MOS for quantized speech and audio using 32 diagonal mixtures
(DFT transformed followed by theperceptual transformation and DCT)

Speech file Audio file

Bit Rate (kHz) MOS MOS

4 2.55 2.9
8 2.8 3.5
16 2.9 4.1

Table (4.4) gives the values of MOS for the case of using MDCT as the transform. We

can see a great quality degradation in this case.

The bit allocation scheme using 16 diagonal mixtures, in both DFT transformed and

MDCT transformed vectors, is given in Tables (4.6 and 4.7). In both cases the bit rate is

16 kBits/sec, the frame size is 120 samples. The bits are allocated to cluster and within

each cluster to the components. The tables show the bit allocation within the cluster with

the highest probability (weight number) as an example. The number of bits allocated to
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Table 4.4 MOS for quantized speech and audio using 16 diagonal mixtures
(MDCT transformed followed by the perceptual transformation and DCT)

Speech file Audio file

Bit Rate (kHz) MOS MOS

4 2.4 2.6
8 2.7 3.1
16 2.9 3.7

dimensions is in decreasing order. Therefore, after DCT transform we need more number

of bits to code lower frequency bins.

4.5.1 Comparison of results with ED reference coder

In addition to the work presented so far, another coding scheme is implemented. This coder

which is named the Excitation Distortion reference coder (ED), uses the same frequency

to excitation domain transformation as the one discussed so far. It then divides the input

vectors to a number of subbands. Scalar quantization with the same step size are applied

in each subband. The quantizer’s step sizes are iteratively decreased in each subband. The

subband that minimizes the corresponding distortion measure in each iteration is chosen

and its step size is decreased, other step sizes remain unchanged. This process is repeated

till we meet a minimum required distortion. The design and implementation details are

discussed in Appendix A.

The results for the reference coder are given in Table 4.5. Comparing the MOS in this

case with the reference coder we see that for the same bit rate and frequency transformation,

the GMM based quantizer has a better performance.
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Table 4.5 MOS comparison for different entropies (20 subbands, DFT trans-
formed followed by the perceptual transformation and DCT)

Speech file Audio file

Entropy (bit/sample) MOS MOS

0.5 (4 kHz) 1.98 2.10
0.75 2.15 2.25

1 (8 kHz) 2.50 2.91
1.2 2.60 3.50

2 (16 kHz) 2.80 4.00
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Table 4.6 Bits allocated to each dimension of the cluster with the high-
est probability, using 16 mixtures (DFT transformed data, followed by the
perceptual transformation and DCT)

No. of No. of No. of No. of
dimension Bits dim Bits dim Bits dim Bits

1 8 31 3 61 1 91 0
2 8 32 3 62 1 92 0
3 7 33 3 63 1 93 0
4 7 34 3 64 1 94 0
5 6 35 3 65 1 95 0
6 6 36 3 66 1 96 0
7 6 37 3 67 1 97 0
8 6 38 3 68 1 98 0
9 6 39 2 69 1 99 0
10 5 40 2 70 1 100 0
11 5 41 2 71 1 101 0
12 5 42 2 72 1 102 0
13 5 43 2 73 1 103 0
14 5 44 2 74 1 104 0
15 4 45 2 75 1 105 0
16 4 46 2 76 0 106 0
17 4 47 2 77 0 107 0
18 4 48 2 78 0 108 0
19 4 49 2 79 0 109 0
20 4 50 2 80 0 110 0
21 4 51 2 81 0 111 0
22 4 52 2 82 0 112 0
23 4 53 2 83 0 113 0
24 4 54 2 84 0 114 0
25 4 55 2 85 0 115 0
26 3 56 2 86 0 116 0
27 3 57 1 87 0 117 0
28 3 58 1 88 0 118 0
29 3 59 1 89 0 119 0
30 3 60 1 90 0 120 0
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Table 4.7 Bits allocated to each dimension of the cluster with the highest
probability cluster using 16 mixtures (MDCT transformed, followed by the
perceptual transformation and DCT)

No. of No. of No. of No. of
dimension Bits dim Bits dim Bits dim Bits

1 6 31 4 61 1 91 0
2 6 32 4 62 1 92 0
3 6 33 4 63 1 93 0
4 7 34 4 64 1 94 0
5 6 35 4 65 1 95 0
6 6 36 4 66 1 96 0
7 6 37 4 67 1 97 0
8 6 38 4 68 1 98 0
9 5 39 4 69 1 99 0
10 5 40 4 70 1 100 0
11 5 41 3 71 1 101 0
12 5 42 3 72 1 102 0
13 4 43 3 73 1 103 0
14 4 44 3 74 0 104 0
15 4 45 2 75 0 105 0
16 4 46 2 76 0 106 0
17 4 47 2 77 0 107 0
18 4 48 2 78 0 108 0
19 4 49 2 79 0 109 0
20 4 50 2 80 0 110 0
21 4 51 2 81 0 111 0
22 4 52 2 82 0 112 0
23 4 53 2 83 0 113 0
24 4 54 2 84 0 114 0
25 4 55 2 85 0 115 0
26 4 56 2 86 0 116 0
27 4 57 1 87 0 117 0
28 4 58 1 88 0 118 0
29 4 59 1 89 0 119 0
30 4 60 1 90 0 120 0
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Chapter 5

Conclusion

This thesis has focused on the design and implementation of a speech and audio coder. The

main contribution is the use of perceptual transformations and gaussian mixture models in

the design of the quantizer. However, we have quantized the excitation patterns to have

more fidelity of the quantized speech.

5.1 Summary of Work

We discuss the work done and the idea behind the our domain transformation and use of

mixture models for VQ. Also the Excitation Domain coder which is explained in Appendix

A is discussed briefly here.

5.1.1 Perceptual Domain Transformation

In order to consider the properties of human auditory system in the design of the quantizer

a perceptual transformation has been used. The speech and audio files have been divided

to frames of size N , where N is equal to 60, 80 and 120. These frames are then transformed

to frequency domain. The transformation to frequency domain is done using either DFT or

MDCT. In the first case the vectors are complex numbers and in the second case we have

real numbers. Therefore, the MDCT phase will reduce to positive or negative signs. Since,

we assume perfect phase reconstruction in our quantizer design the resultant quantized files

have a better performance when we use DFT as the transformation.

The perceptual transformation used here has been explained thoroughly in Section 2.3.
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The smearing function used is based on Moore’s model and is in the form of roex. This

function depends on two variables. One is the central frequency at which we need to eval-

uate the excitation pattern. The other function is the range of frequencies for which the

function is determined. The excitation patterns are obtained by weighting the power spec-

trum vectors using the smearing function and integrating this product over the frequency

range.

The middle/outer ear transfer function’s effect has been considered as a matrix which

has been multiplied by the excitation domain transformation’s matrix. Using the overall

transformation we wind up with a set of new vectors which are in the form of excitation pat-

terns. The idea behind this change of quantization domain (from frequency to excitation)

is the concept of human auditory system. Since, the new vectors are weighted by functions

which are based on auditory properties, the distortion measure used for quantization will

be a weighted distortion. Minimizing this function, we will have more fidelity in the quality

of the quantized speech and audio.

Any transformation of the space of power spectrum which spans RN+
will result in the

vectors which no longer span RN+
(Section 4.3). The region over which the new vectors

are defined is limited to a polyhedron. The problem that arises here is that, quantizing

the points which are near the sides of this polyhedron may lead to points outside the

acceptable region. Therefore, using the inverse perceptual transformation at the decoder

end may result in spectral vectors with negative elements. To avoid this problem, we have

implemented a Non Negative Least Square algorithm using Matlab. Therefore, the outlier

points are projected to the nearest point on the sides of the polyhedron. The mean square

of error is minimized in this algorithm.

5.1.2 Gaussian Mixture Model based VQ

The quantizer scheme is based on the quantizer proposed in [4]. This quantizer takes the

speech vectors and after mean subtraction and decorrelation uses a simple scalar quanti-

zation which is based on assuming Gaussian pdf. The idea behind choosing GMMs is their

flexibility, bit rate scalability, variable rate coding, interoperability (which means the abil-

ity of switching between memoryless quantizers and quantizers with memory) and learning

(Section 3.4).

In order to decorrelate data vectors we need their statistics. However, speech is a random
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non-stationary source. Therefore, in order to model its pdf we need a linear combination

of a set of basis function. Gaussian mixtures have been used for this aim. It has been

shown that Gaussians are good radial basis functions. In order to find the parameters of

mixtures, a set of speech and audio vectors were used. For the case of 60 dimensional

vectors we used 400 000 vectors. The training has been done using both full and diagonal

covariance matrices. As stated before in Section (4.4.3) for high dimensional data (120

in this case) the problems of singularity and under estimation occur. Since we have used

DCT as an approximation to Karhunen–Loeve which decorrelates data we can use diagonal

covariances to combat these problems. The reason is that the decorrelated vectors have

very small off–diagonal elements which can be neglected in modelling.

The quantization has been done using M quantizers, where M is equal to the number

of mixtures. The quantizers all quantize the input vector separately and in parallel and the

result of the quantization which minimizes the corresponding distortion measure is chosen.

The bit allocation is based on the fact that total number of levels should be equal to

the sum of the number of levels of each quantizer (number of levels given to each cluster).

The lower frequency bins are of more importance and more number of bits is allocated to

quantize them.

5.1.3 Comparison of results

In order to evaluate the performance of the GM model, the data using the given statistics of

the GM are regenerated. The histograms are compared with the histograms of the original

data. It is seen that the GM model has a good performance, unless we have data with

high dimensions and want to use full covariances. In this case we need a higher number of

training vectors and offset values should be added to the covariance matrix in each step of

the EM algorithm.

We have used the PESQ software to evaluate the resulting performance. The bit rates

of 4, 8 and 16 kbits/sec have been considered. The Mean Opinion Score is given, out of a

5 scale using this software.

In order to compare, an ED coder has been implemented in Appendix A. This coder

uses the same transformation of frequency to excitation domain. It then divides the input

to a number of subbands. Scalar quantization is used in each subband and the step sizes

are iteratively decreased. The algorithm is terminated when the distortion is below some
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threshold. In order to compute the bit rate entropy has been used in this case. Finally the

MOS results are given in this case (Table A.2).

Comparing the MOS results of Table (4.2) with Table (A.2), we see that the numbers

are in the same range and the proposed GMM coder has a slightly better performance (on

average 0.2 to 0.3 higher MOS).

5.2 Future Work

This section will detail the future possible directions to be considered for improving the

current work. The major concepts behind the design of the current coder are two fold,

first the concept of perceptual domain transformation and second the use of a GMM based

vector quantizer.

5.2.1 Considering Phase quantization in Coder Design

We have assumed perfect phase reconstruction for DFT transform. Also, we assumed

the sign values to be perfectly reconstructed for MDCT transformation. However, in a

real coder the effect of phase and sign have to be considered. Therefore, a direction for

further works can be design of proper phase and sign quantizers for coder, and compare the

results of MDCT and DFT to see which transform works better. Pobloth and Kleijn have

considered the effects of phase perception in speech coding and have defined a perceptual

phase capacity in [54] as the size of a codebook of phase spectra in a perceptually accurate

model. Kim has proposed a perceptual phase coding in [55], where more bits are allocated

to phase components which are perceptually more important. In [11] the sign quantization

for MDCT has been considered. This scheme is described more in Section (4.1.2).

5.2.2 Transformation to New domain

Although we have used the Moore’s model here and defined a new domain for coding, one

can consider other possible representations of data in frequency domain. Different percep-

tual domain matrices can be used for implementations. Also except MMSE, other distortion

measures can be used to see whether there will be an improvement in the performance.
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5.2.3 Mixture Modelling

An important issue is the choice of a proper mixture model for data vectors. We focused

on the Gaussians with diagonal covariance matrices. The main problem with the full

covariances here is the high dimensionality of the data vectors. However, using bigger data

bases for training can help solve this problem. In the cases that we encounter singularity

in the steps of the EM algorithm we used offset matrices to solve this problem. One can

also consider different offset values and find an optimum value, since the values in our

simulations were obtained empirically and are not optimum. The choice of the covariance

matrix can be something between full and diagonal. This way we gain more precision

and at the same time the computational complexity will still be less than the case of full

covariance matrices a good question will be how to choose this matrix and which structure

should be imposed.

Another issue is the number of mixtures used in modelling. The limit on the number of

training vectors poses a restriction on the number of mixtures. Using bigger data bases, one

can model data with more number of mixtures. Although, it seems that we will not gain a

lot after some point, this can be a possible direction. In our case use of 16 and 32 mixture

models gave almost the same result. However, if we increase the number of mixtures above

some value we no longer can assume that clusters are well separated. Therefore, the bit

allocation given for the quantizer design using high resolution expression for distortion is

no longer valid. The choice of proper covariance matrix and number of mixtures is an issue

which can be studied.

5.2.4 Bit allocation

This scheme uses a fixed rate bit allocation. Variable bit allocation as considered in [4]

can be compared with this case. Because of the high data dimensions at some points

we encountered negative bit allocation (Section 4.4.1). To solve this problem we set the

number of bits in dimensions with negative bit allocation equal to zero and decreased the

same number of bits from the dimensions with positive number of bits in order to satisfy the

given bit rate constraint in each case . This algorithm is not optimal anymore. Therefore,

one can look at different bit allocation algorithms like the one proposed in [10] for high

dimensional VQ to improve the performance.

Finally, to evaluate the performance of the coder we used the ED coder which allocated
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the bits based on a greedy algorithm. However, other coders may be implemented to give

more comparison.
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Appendix A

Excitation Distortion Reference

Coder

The excitation distortion reference coder is a transform coder which works based on an

iterative step size change (a greedy algorithm). We have implemented this coder in the

excitation domain and used the same transform matrices which we previously used for the

GMM based quantizer. In order to compute the bit rate, the entropies of coefficients in

all dimensions have been computed. This coder benefits from some basic concepts used in

MP3 coding. The quantization procedure and the results are discussed below.

A.1 The quantizer scheme

The reference coder is based on quantization of subbands in the same excitation domain

as the original coder proposed in the thesis. Input audio and speech are divided to frames

of length N and each frame is represented in the frequency domain using a DFT. We then

transform the frames using the same power spectrum to excitation matrix used in Chapter

2. Each transformed frame in the Excitation domain undergoes a DCT transformation for

decorrelation.

Frames are divided into a number of subbands. Scalar quantization is done for each

coefficient and the quantizer step size is the same for all of the coefficients in a subband.

The number of samples in different subbands are equal which is different from the Bark

scale distribution used in MP3 coding.

The goal is to find the optimum step size for each subband such that the quantized
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version of speech and audio satisfies the bit rate constraints. Uniform scalar quantizers

with the same step size are used in each of the bands. The quantization is done frame by

frame.

In the end, to compare the resulting quantized files with our proposed coder the bit rate

has to be measured. Therefore, we calculate the entropy of each coefficient of the quantized

file. The average entropy is considered as a measure for the number of bits needed to encode

each coefficient.

Subbands are given initial step sizes which are decreased using a greedy algorithm. In

each iteration of this algorithm the distortion is measured. Since we are decreasing the step

size, the average MMSE distortion will decrease in each iteration.1 The greedy algorithm

for each frame terminates when the frame distortion is below some specific threshold value.

The quantization is discussed below more thoroughly,

Step size initialization: In the first iteration it is desired for all components to be

quantized to zero. Assuming the quantizer step size to be q it is known that for scalar

quantization the error is always smaller than q
2

[56]. Therefore, in each subband the step

size is chosen to be slightly more than twice the greatest coefficient in that subband.

Quantizer Initialization: Using the given step size, a uniform quantization is per-

formed for each component. This scheme is implemented in the following symmetrical

mid-tread closed form,

x̂j = δi × [[
xj

δi

]] (A.1)

where xj is the jth component of the input vector after DCT transform, δ is the ith

subband’s step size, [[]] is the round operation and x̂j is the quantized version of the input.

In this representation of scalar quantizer round(
xj

δi
) represents the index of each quantized

coefficient which may be positive or negative. In the first iteration, using the initial value

of the step size, all of the quantized components of the subband are zero. At this step the

distortion is computed. We have used the mean square distortion measure here which we

used as well in the GMM quantizer. The initial distortion is equal to the signal itself.

Quantization Scheme: A threshold value is chosen empirically for the distortion.

Decreasing this value will result in better quality of quantized speech and a higher bit rate

and entropy. For a specific bit rate we have computed the average number of bits per

sample or entropy. The threshold value given for distortion is related to entropy and has

1The actual MSE may not decrease monotonically with decreasing the step size.
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been changed until we found a threshold which results in value which is a little bit smaller

than the desired entropy for the quantized file. The distortion comparison is as follows. In

each iteration of this algorithm the distortion is compared to the chosen threshold. If it

is above that threshold the algorithm either continues, otherwise the required bit rate is

attained and the frame quantization algorithm terminates.

The entropy is related to MMSE distortion as follows. Having smaller distortion on

average means that we gain more fidelity using our quantizer. Therefore, we need larger

number of levels and in other words larger number of bits in the quantizer. The number

of bits required to code a sample is defined as entropy. The details about the entropy

computation is explained in Section (A.2).

The initial step size is decreased by a factor α smaller than one in each iteration. If the

factor is too small it will result in loss of precision. On the other hand, a big factor like

α = 0.99 will cause the algorithm to take a long time to converge. We chose α = 0.9 for

the purpose of simulation. Assuming that for a frame of length N we have m subbands the

process for each iteration is explained below,

1. Initialize i to be equal to zero.

2. Decrease the ith frame’s step size by α. Quantize the input vector using Eq. (A.1).

3. Compute the MMSE distortion. Subtract the resulting distortion from the distortion

given in the previous iteration and call it ∆i.

4. Set the ith frames step size back to its previous value.

5. Increase i by 1, if i ≤ m then go to step 2 otherwise go to step 6.

6. Chose the value of i for which the absolute value of ∆i is maximum. Decrease the

step size of ith subband by the factor α and let other subbands’ step sizes to remain

unchanged.

If we decrease the number of subbands we lose quality. Although, having N scale

factors gives the best performance in this case, we need to send all these coefficients as side

information to the decoder. Therefore, there is a trade off between the subband number

quality of the quantized speech and the side information needed to be sent.

At the decoder part the sent indices are mapped back to a quantized value. The inverse

DCT is followed by the inverse of the Excitation domain transformation. Finally, using the
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inverse DFT we map the vectors back to time domain. The overal block diagram of this

coder and decoder is depicted in Fig. A.1.
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Fig. A.1 The overall scheme of the reference coder/decoder

A.2 Entropy Computation

Assuming a sample space X = {a1, . . . , aK} the self information of the event x = ak is

defined as [57]

IX = log
1

PX(ak)
. (A.2)

This can be interpreted as the a priori uncertainty of the event x = ak or the amount of

information needed to resolve this uncertainty. The entropy of an ensemble is defined to

be the average value of the self information and is given by

H(X) = −
K∑

k=1

PX(ak) log PX(ak). (A.3)

Entropy can be interpreted as the average amount of uncertainty in X.

In the case of the ED reference coder each dimension of the quantized vector can be

considered as a set of symbols. The entropy computation is explained below,

1. The kth coefficient of each frame is saved in a vector Vk, where 1 ≤ k ≤ N .

2. In order to compute the entropy of Vk we need a normalization process. The value

of each level of the quantizer equals the level’s index multiplied by the quantizer step
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size. The step sizes for a specific subband are different for different frames. The

quantized coefficient is divided by its corresponding step size to give the index.

3. The probability of occurrence PX(ak), of each index of the quantizer is computed.

4. The entropy H(X) of the kth dimension using Eq. (A.3).

The average number of bits for each sample is computed by taking the average entropy

over all of the dimensions.

A.3 Experimental Results

The above algorithm is implemented for 120 dimensional input vectors. A plot of entropy

values for different dimensions is given in Fig. A.2.
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Fig. A.2 The entropy of each dimension for a 120 dimensional vector

This means the lower frequency bins need more number of bits to be quantized. There-

fore, the average entropy has been used for the purpose of comparison. The entropy of

1 bit/sample is equal to a bit rate of 8 kbits/sec, since the sampling frequency is 8 kHz.

Using MOS results, this entropy gives an acceptable quality of the quantized speech, but

distortion can be felt to some extent.
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Table A.1 MOS comparison for different number of subbands with the av-
erage entropy of 1 bit/sample

Speech file

Number of Subbands MOS

15 2.25
20 2.50
40 2.55

We have compared 3 different number of subbands in Table A.1. The results of MOS

are obtained using PESQ software.

Table A.2 shows the performance of the quantizer for 20 subbands and different values

of entropy. The test speech file belongs to a female speaker and its duration is 5 seconds.

The test audio is a classical piano of duration 10 seconds.

The results of the two tables show that the quality of the quantized speech is acceptable.

However, we can hear distortion.

Table A.2 MOS comparison for different entropies (20 subbands)

Speech file Audio file

Entropy (bit/sample) MOS MOS

0.5 (4 kHz) 1.98 2.10
0.75 2.15 2.25

1 (8 kHz) 2.50 2.91
1.2 2.60 3.50

2 (16 kHz) 2.80 4.00
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